Skip to main content

Advertisement

Log in

Analysis of an electromechanical energy harvester system with geometric and ferroresonant nonlinearities

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Enhancing the performance of vibrating energy harvesting systems has been the backbone of several research contributions for the last few years, and it is considered in this paper. Specifically, an electromechanical energy harvester is analyzed, and the effects of geometric and ferroresonant nonlinearities on the electric power are discussed. The geometric nonlinearity includes the small- and high-order terms in Euler internal force while the ferroresonant nonlinearity is included by assuming different levels of saturation in the circuit. Our results reveal regions in the parameter space where nonlinear stiffness is better than linear stiffness and vice versa. Similarly, increasing the saturation parameter can be used to enhance the electric power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bibo, A., Masana, R., King, A., Li, G., Daqaq, M.: Electromagnetic ferrofluid-based energy harvester. Physics Letters A 376(32), 2163–2166 (2012)

    Article  Google Scholar 

  2. Erturk, A.: Piezoelectric energy harvesting for civil infrastructure system applications: Moving loads and surface strain fluctuations. Journal of Intelligent Material systems and structures 22(17), 1959–1973 (2011)

    Article  Google Scholar 

  3. Erturk, A., Vieira, W.G.R., De Marqui, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Applied Physics Letters 96(18), 184103 (2010)

    Article  Google Scholar 

  4. Tcheutchoua Fossi, D.O., Woafo, P.: Dynamics of an electromechanical system with angular and ferrosonant nonlinearities. Journal of Vibration and Acoustics 6, 061018 (2011)

    Article  Google Scholar 

  5. Glynne-Jones, P., Tudor, M., Beeby, S., White, N.: An electromagnetic, vibration-powered generator for intelligent sensor systems. Sensors and Actuators A: Physical 110(1–3), 344–349 (2002)

    Google Scholar 

  6. Kwon, S.D.: A t-shaped piezoelectric cantilever for fluid energy harvesting. Applied Physics Letters 97(16), 164102 (2010)

    Article  Google Scholar 

  7. Kwuimy, C.A.K., Litak, G., Borowiec, M., Nataraj, C.: performance of a piezoelectric energy harvester driven by air flow. Applied Physics Letters 100(2), 024,103 (2012)

    Article  Google Scholar 

  8. Kwuimy, C.A.K., Nbendjo, B.N., Woafo, P.: Optimization of electromechanical control of beam dynamics: Analytical method and finite differences simulation. Journal of Sound and Vibration 298(1–2), 180–193 (2006)

    Google Scholar 

  9. Lallart, M., Pruvost, S., Guyomar, D.: Electrostatic energy harvesting enhancement using variable equivalent permittivity. Physics Letters A 375(45), 3921–3924 (2011)

    Google Scholar 

  10. Li, S., Yuan, J., Lipson, H.: Ambient wind energy harvesting using cross-flow fluttering. Journal of Applied Physics 109(2), 026104 (2011)

    Article  Google Scholar 

  11. Litak, G., Friswell, M.I., Kwuimy, C.K., Adhikari, S., Borowiec, M.: Energy harvesting by two magnetopiezoelastic oscillators with mistuning. Theoritical and Applied Mechanics letters 2, 043,009 (2012)

    Google Scholar 

  12. Mann, B., Sims, N.: Energy harvesting from the nonlinear oscillations of magnetic levitation. Journal of Sound and Vibration 319(1–2), 515–530 (2009)

    Article  Google Scholar 

  13. Mann, B., Sims, N.: On the performance and resonant frequency of electromagnetic indution energy harvesters. Journal of Sound and Vibration 329(9), 1348–1361 (2010)

    Article  Google Scholar 

  14. Masana, R., Daqaq, M.F.: Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. Journal of Sound and Vibration 330(24), 6036–6052 (2011)

    Article  Google Scholar 

  15. Nayfeh, A.H., Mook, D.: Nonlinear Oscillations. Wiley-Interscience, New York (1979)

    MATH  Google Scholar 

  16. Nbendjo, B.N., Woafo, P.: Modelling of the dynamics of euler beam by phi 6 potential. Mechanics Research communications 38(8), 542–545 (2011)

    Article  MATH  Google Scholar 

  17. Owens, B.A., Mann, B.P.: Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting. Journal of Sound and Vibration 331(4), 922–937 (2012)

    Article  Google Scholar 

  18. Ramlan, R., Brennan, M., Mace, B., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dynamics 59, 545–558 (2010)

    Article  MATH  Google Scholar 

  19. Shahruz, S.M.: Design of mechanical band-pass filters for energy scavenging. Journal of Sound and Vibration 292(3–5), 987–998 (2006)

    Google Scholar 

  20. Shahruz, S.M.: Increasing the efficiency of energy scavengers by magnets. Journal of Computational and Nonlinear Dynamics 3(4), 041,001 (2008)

    Article  Google Scholar 

  21. Poulin, G., Sarrante, E., Costa, F.: Generation of electrical energy for portable devices: comparative study of an electromagnetic and a piezoelectric system. Sensors and Actuators A 116, 461 (2004)

    Article  Google Scholar 

  22. Tang, L., Yang, Y.: Analysis of synchronized charge extraction for piezoelectric energy harvesting. Smart Materials and Structures 20, 085,022 (2011)

    Article  Google Scholar 

  23. Wang, J.J.: Electromagnetic energy harvesting from train induced railway track vibrations. In IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (2012)

  24. Williams, C., Yates, R.: Analysis of a microgenerator for microsystems. In: Proceedings of 8th International Conference on Solid-State, Sensors and Actuators (1995)

Download references

Acknowledgments

G.T.O.T., E.B.T.T. and P.W. are indebted to the Humboldt foundation (Germany) for support. C.A.K.K. is supported by the US Office of Naval Research under the Grant N00014-08-1-0435. Thanks are due to Mr. Anthony Seman III and Prof. C. Nataraj.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Woafo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tékam, G.T.O., Tchuisseu, E.B.T., Kwuimy, C.A.K. et al. Analysis of an electromechanical energy harvester system with geometric and ferroresonant nonlinearities. Nonlinear Dyn 76, 1561–1568 (2014). https://doi.org/10.1007/s11071-013-1228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1228-6

Keywords

Navigation