Skip to main content
Log in

Newton iterative identification method for an input nonlinear finite impulse response system with moving average noise using the key variables separation technique

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies parameter identification problems for input nonlinear finite impulse response systems with moving average noise (i.e., input nonlinear finite impulse response moving average systems). Since the identification model of the system contains the product of the parameters of the nonlinear part and the linear part, we use the key variables separation technique and express the output of the system as the linear combination of all parameters, and then derive a Newton iterative identification method. The simulation results show that the proposed algorithm is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  2. Goodwin, G.C., Sin, K.S.: Adaptive Filtering Prediction and Control. Prentice Hall, Englewood Cliffs (1984)

    MATH  Google Scholar 

  3. Ding, F.: System Identification—New Theory and Methods. Science, Beijing (2013)

    Google Scholar 

  4. Zhu, D.Q., Kong, M.: Adaptive fault-tolerant control of nonlinear system: an improved CMAC based fault learning approach. Int. J. Control 80(10), 1576–1594 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zhu, D.Q., Gu, W.: Sensor fusion for integrated circuit fault diagnosis using a belief function model. Int. J. Distrib. Sens. Netw. 6(4), 247–261 (2008)

    Article  Google Scholar 

  6. Zhu, D.Q., Liu, Q., Yang, Y.S.: An active fault-tolerant control method of unmanned underwater vehicles with continuous and uncertain faults. Int. J. Adv. Robotic Syst. 5(4), 411–418 (2008)

    Google Scholar 

  7. Ikeda, T., Harata, Y., Ibrahim, R.A.: Nonlinear liquid sloshing in square tanks subjected to horizontal random excitation. Nonlinear Dyn. 72(1–2), 439–453 (2013)

    Article  MathSciNet  Google Scholar 

  8. Rashid, M.T., Frasca, M., et al.: Nonlinear model identification for Artemia population motion. Nonlinear Dyn. 69(4), 2237–2243 (2012)

    Article  MathSciNet  Google Scholar 

  9. Shi, Y., Fang, H.: Kalman filter based identification for systems with randomly missing measurements in a network environment. Int. J. Control 83(3), 538–551 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shi, Y., Yu, B.: Robust mixed H-2/H-infinity control of networked control systems with random time delays in both forward and backward communication links. Automatica 47(4), 754–760 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhang, Q.J., Luo, J., Wan, L.: Parameter identification and synchronization of uncertain general complex networks via adaptive-impulsive control. Nonlinear Dyn. 71(1–2), 353–359 (2013)

    Google Scholar 

  12. Liu, L.C., Tian, B., Xue, Y.S., et al.: Analytic solution for a nonlinear chemistry system of ordinary differential equations. Nonlinear Dyn. 68(1–2), 17–21 (2012)

    Article  MathSciNet  Google Scholar 

  13. Chakraborty, K., Haldar, S., Kar, T.K.: Global stability and bifurcation analysis of a delay induced prey–predator system with stage structure. Nonlinear Dyn. 73(3), 1307–1325 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20(3), 505–592 (2006)

    Article  Google Scholar 

  15. Giannakis, G., Serpedin, E.: A bibliography on nonlinear system identification. Signal Process. 81(3), 533–580 (2001)

    Article  MATH  Google Scholar 

  16. Nelles, O.: Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, Berlin (2001)

    Book  Google Scholar 

  17. Wills, A., Schön, T.B., Ljung, L., Ninness, B.: Identification of Hammerstein–Wiener models. Automatica 49(1), 70–81 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, Z.Y., Shen, Y.X., Ji, Z.C., et al.: Filtering based recursive least squares algorithm for Hammerstein FIR-MA systems. Nonlinear Dyn. 73(1–2), 1045–1054 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, D.Q., Ding, F.: Least squares based and gradient based iterative identification for Wiener nonlinear systems. Signal Process. 91(5), 1182–1189 (2011)

    Article  MATH  Google Scholar 

  20. Wang, D.Q., Ding, F.: Hierarchical least squares estimation algorithm for Hammerstein–Wiener systems. IEEE Signal Process. Lett. 19(12), 825–828 (2012)

    Article  Google Scholar 

  21. Hu, P.P., Ding, F.: Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle. Nonlinear Dyn. 73(1–2), 583–592 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang, D.Q., Ding, F., Chu, Y.Y.: Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle. Inf. Sci. 222, 203–212 (2013)

    Article  MathSciNet  Google Scholar 

  23. Ding, F., Chen, T.: Identification of Hammerstein nonlinear ARMAX systems. Automatica 41(9), 1479–1489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ding, F.: Coupled-least-squares identification for multivariable systems. IET Control Theory Appl. 7(1), 68–79 (2013)

    Article  MathSciNet  Google Scholar 

  25. Dehghan, M., Hajarian, M.: Iterative algorithms for the generalized centro-symmetric and central anti-symmetric solutions of general coupled matrix equations. Eng. Comput. 29(5), 528–560 (2012)

    Article  Google Scholar 

  26. Dehghan, M., Hajarian, M.: Fourth-order variants of Newton’s method without second derivatives for solving non-linear equations. Eng. Comput. 29(4), 356–365 (2012)

    Google Scholar 

  27. Ding, F., Liu, X.G., Chu, J.: Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory Appl. 7(2), 176–184 (2013)

    Article  MathSciNet  Google Scholar 

  28. Ding, F., Ma, J.X., Xiao, Y.S.: Newton iterative identification for a class of output nonlinear systems with moving average noises. Nonlinear Dyn. 74(1–2), 21–30 (2013)

    Google Scholar 

  29. Ding, F.: Two-stage least squares based iterative estimation algorithm for CARARMA system modeling. Appl. Math. Model. 37(7), 4798–4808 (2013)

    Google Scholar 

  30. Ding, F., Liu, X.M., Chen, H.B., Yao, G.Y.: Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems. Signal Process. 97, 31–39 (2014)

    Google Scholar 

  31. Li, J.H.: Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration. Appl. Math. Lett. 26(1), 91–96 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ding, F., Liu, X.P., Liu, G.: Identification methods for Hammerstein nonlinear systems. Digit. Signal Process. 21(2), 215–238 (2011)

    Article  Google Scholar 

  33. Vörös, J.: Modeling and parameter identification of systems with multi-segment piecewise-linear characteristics. IEEE Trans. Autom. Control 47(1), 184–188 (2002)

    Article  Google Scholar 

  34. Vörös, J.: Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Trans. Autom. Control 48(12), 2203–2206 (2003)

    Article  Google Scholar 

  35. Shen, Q.Y., Ding, F.: Iterative estimation methods for Hammerstein controlled autoregressive moving average systems based on the key-term separation principle. Nonlinear Dyn. (2014). doi:10.1007/s11071-013-1097-z

  36. Wang, D.Q., Chu, Y.Y., et al.: Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems. Math. Comput. Model. 52(1–2), 309–317 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Li, J.H., Ding, F.: Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique. Comput. Math. Appl. 62(11), 4170–4177 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ding, F.: Decomposition based fast least squares algorithm for output error systems. Signal Process. 93(5), 1235–1242 (2013)

    Article  Google Scholar 

  39. Ding, F.: Combined state and least squares parameter estimation algorithms for dynamic systems. Appl. Math. Model. 38(1), 403–412 (2014)

    Article  MathSciNet  Google Scholar 

  40. Liu, Y.J., Sheng, J., Ding, R.F.: Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems. Comput. Math. Appl. 59(8), 2615–2627 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61273194), the Fundamental Research Funds for the Central Universities (No. JUSRP51322B), the PAPD of Jiangsu Higher Education Institutions and the 111 Project (B12018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, K., Ding, F. Newton iterative identification method for an input nonlinear finite impulse response system with moving average noise using the key variables separation technique. Nonlinear Dyn 76, 1195–1202 (2014). https://doi.org/10.1007/s11071-013-1202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1202-3

Keywords

Navigation