Skip to main content
Log in

Radial and torsional vibration characteristics of a rub rotor

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear dynamics characteristics of a vertical Jeffcott rotor with radial rub-impact are investigated in this paper. Considering the influence of speed whirling, the radial-torsional coupling model of the rub rotor in polar coordinate system is established. With the improved model, the dynamics characteristics of radial vibration, whirl and torsional vibration are analyzed under no rub, full annual rub and partial rub conditions. The radial harmonic frequency is obtained by the harmonic balance method. The torsional vibration has the harmonic frequency component similar to the radial vibration. The new harmonic frequency is useful to help diagnose the occurrence of rub fault. A reasonable explanation of backward whirl instability is presented in this paper. With development of partial rub, the backward whirl will occur. When the backward whirling frequency is near the natural frequency, the instability is observed. The numerical method gives the quantitative results and reveals the backward whirl instability process of rub.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

r :

Radial displacement

θ :

Whirling phase angle

ϕ 0 :

Initial imbalance phase angle

ϕ :

Rotational angle

e :

Imbalance eccentricity

k r :

Lateral stiffness of rotor

c r :

Lateral damping coefficient

α :

Torsional phase angle

Ω :

Rotating speed

μ :

Friction coefficient

m :

Mass of rotor

c α :

Torsional damping coefficient

k α :

Torsional stiffness

k s :

Stator stiffness

δ :

Clearance between rotor and stator

F N :

Normal rub force

F T :

Tangent rub force

ω n :

Natural frequency of non-rub system

ρ :

Non-dimensional radial displacement

ε :

Non-dimensional imbalance eccentricity

v :

Non-dimensional lateral damping coefficient

ω :

Non-dimensional rotating speed

J p :

Moment of inertia

v t :

Non-dimensional torsional damping coefficient

ω t :

Non-dimensional torsional natural frequency

k :

Non-dimensional stator stiffness

f N :

Non-dimensional normal rub force

f T :

Non-dimensional tangent rub force

ω ρ :

Radial vibration feature frequency of rub system

ω ρst :

Onset radial vibration feature frequency of partial rub system

ω ρend :

Onset radial vibration feature frequency of dry friction backward whirl

ω θ :

Whirling frequency of rub system

ω θ0 :

The constant term of ω θ

α 0 :

The constant term of torsional phase angle

θ 0 :

The constant term of whirling phase angle

ρ 0 :

The constant term of non-dimensional radial displacement

ρ ia :

The ith harmonic cosine coefficient of ρ

ρ ib :

The ith harmonic sine coefficient of ρ

θ ia :

The ith harmonic cosine coefficient of θ

θ ib :

The ith harmonic sine coefficient of θ

α ia :

The ith harmonic cosine coefficient of α

α ib :

The ith harmonic sine coefficient of α

s 1 :

The attenuation coefficient

ρ 1 :

The first-order coefficient of ρ

θ ρ :

The phase of the first-order term of ρ

X :

Rotating frequency, 1X means one time of rotating frequency, 1/2X means half of rotating frequency

ω b :

Backward whirling frequency of rub system

ω b0 :

Backward whirling frequency when dry friction backward whirl occurs (backward whirl natural frequency of coupled rubbing system)

ω b1 :

Backward whirling frequency after the occurrence of dry friction backward whirl

Z :

Complex deflection of the rotor

Z 1 :

Solution parts of the self-excited backward whirl motion

Z 2 :

Solution parts of the forced forward whirl motion

σ :

Real part of exponent of the solution part of backward whirling motion

A :

Amplitude of Z 1

B :

Amplitude of Z 2

References

  1. Muszynska, A.: Rotor-to-stationary element rub-related vibration phenomena in rotating machinery, literature survey. Shock Vib. Dig. 21, 3–11 (1989)

    Article  Google Scholar 

  2. Muszynska, A.: Partial lateral rotor to stator rubs. In: Proceedings of the 3th International Conference on Vibration in Rotating Machinery, C281/84, Imech York, pp. 327–335 (1984)

    Google Scholar 

  3. Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90, 129–155 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Li, G.X., Paidoussis, M.P.: Impact phenomena of rotor-casing dynamical systems. Nonlinear Dyn. 5, 53–70 (1994)

    Google Scholar 

  5. Chu, F., Zhang, Z.: Bifurcation and chaos in a rub-impact Jeffcott rotor system. J. Sound Vib. 210, 1–18 (1998)

    Article  Google Scholar 

  6. Goldman, P., Muszynska, A.: Chaotic behavior of rotor/stator systems with rubs. J. Eng. Gas Turbines Power 116, 692–710 (1994)

    Article  Google Scholar 

  7. Chu, F., Lu, W.: Experimental observation of nonlinear vibrations in a rub-impact rotor system. J. Sound Vib. 283, 621–645 (2005)

    Article  Google Scholar 

  8. Kim, Y., Noah, S.: Quasi-periodic response and stability analysis for a non-linear Jeffcott rotor. J. Sound Vib. 190, 239–253 (1996)

    Article  Google Scholar 

  9. Zhang, G.F., Xu, W.N., Xu, B., Zhang, W.: Analytical study of nonlinear synchronous full annular rub motion of flexible rotor–stator system and its dynamic stability. Nonlinear Dyn. 57, 579–592 (2009)

    Article  MATH  Google Scholar 

  10. Feng, Z., Zhang, X.: Rub phenomena in rotor–stator contact. Chaos Solitons Fractals 14, 257–267 (2002)

    Article  MATH  Google Scholar 

  11. Choi, Y.: Investigation on the whirling motion of full annular rotor rub. J. Sound Vib. 258, 191–198 (2002)

    Article  Google Scholar 

  12. Jiang, J., Ulbrich, H.: Stability analysis of sliding whirl in a nonlinear Jeffcott rotor with cross-coupling stiffness coefficients. Nonlinear Dyn. 24, 269–283 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jiang, J., Ulbrich, H.: The physical reason and the analytical condition for the onset of dry whip in rotor-to-stator contact systems. J. Vib. Acoust. 127, 594–603 (2005)

    Article  Google Scholar 

  14. Childs, D., Bhattacharya, A.: Prediction of dry-friction whirl and whip between a rotor and a stator. J. Vib. Acoust. 129, 355–362 (2007)

    Article  Google Scholar 

  15. Ding, Q.: Backward whirl and its suppression of a squeeze film damper mounted rotor/casing system in passage through critical speed with rubs. J. Vib. Control 10, 561–573 (2004)

    Article  Google Scholar 

  16. Sorge, F.: Rotor whirl damping by dry friction suspension systems. Meccanica 43, 577–589 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Edwards, S., Lees, A., Friswell, M.: The influence of torsion on rotor/stator contact in rotating machinery. J. Sound Vib. 225, 767–778 (1999)

    Article  Google Scholar 

  18. Al-Bedoor, B.: Transient torsional and lateral vibration of unbalanced rotors with rotor-to-stator rub. J. Sound Vib. 229, 627–645 (2000)

    Article  Google Scholar 

  19. Patel, T., Zuo, M.J., Zhao, X.: Nonlinear lateral-torsional coupled motion of a rotor contacting a viscoelastically suspended stator. Nonlinear Dyn. 69, 325–339 (2012)

    Article  Google Scholar 

  20. Patel, T., Darpe, A.: Coupled bending-torsional vibration analysis of rotor with rub and crack. J. Sound Vib. 326, 740–752 (2009)

    Article  Google Scholar 

  21. Sun, Z., Xu, J., et al.: Study on influence of bending-torsion coupling in an impacting-rub rotor system. Appl. Math. Mech. 24, 1316–1323 (2003)

    Article  Google Scholar 

  22. Huang, D.: Experiment on the characteristics of torsional vibration of rotor-to-stator rub in turbomachinery. Tribol. Int. 33, 75–79 (2000)

    Article  Google Scholar 

  23. Yu, J.J., Goldman, P., Bently, D.E., Muszynska, A.: Rotor/ seal experimental and analytical study on full annular rub. J. Eng. Gas Turbines Power 124, 340–350 (2002)

    Article  Google Scholar 

  24. Crandall, S.: From whirl to whip in rotor dynamics. In: Proceedings of IFToMM 3rd International Conference on Rotor Dynamics, Lyon, France, pp. 19–26 (1990)

    Google Scholar 

  25. Jiang, J.: The analytical solution and the existence condition of dry friction backward whirl in rotor-to-stator contact systems. J. Vib. Acoust. 129, 260–264 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (Grant No. 51175279), Beijing Natural Science Foundation (Grant No. 3112013) and the Key Lab of Health Maintenance for Mechanical Equipment of Hunan Province in Hunan Science and Technology University (Grant No. KFJJ0903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxiu Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Chu, F. Radial and torsional vibration characteristics of a rub rotor. Nonlinear Dyn 76, 529–549 (2014). https://doi.org/10.1007/s11071-013-1147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1147-6

Keywords

Navigation