Skip to main content
Log in

Observer-based fault-tolerant control for an air-breathing hypersonic vehicle model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on controller and observer design for the longitudinal model of an air-breathing hypersonic vehicle (AHV) subject to actuator faults and limited measurements of the states. The feedback linearization method is firstly employed for a modified AHV model with actuator faults, and dynamic effect caused by the actuator faults on the linearized model is analyzed. Based on full state information, an adaptive controller is designed using the Lyapunov method, which guarantees reference command tracking of the AHV under actuator faults. Next, to estimate the unmeasurable states used in the adaptive controller, a sliding observer is designed based on the sliding control method and the Filippov’s construction of the equivalent dynamics (FCED). Finally, the adaptive controller is combined with the sliding observer to generate the observer-based adaptive controller, which relies only on partial state information. Simulations demonstrate that the observer-based adaptive controller achieves desired tracking performance and good robustness in the presence of actuator faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

C D :

Drag coefficient

\(C_{D}^{\alpha^{i}}\) :

ith-order coefficient of α contribution to C D  (1/radi)

\(C_{D}^{\delta_{e}^{i}}\) :

ith-order coefficient of δ e contribution to C D (1/radi)

\(C_{D}^{0}\) :

Constant term in C D

C L :

Lift coefficient

\(C_{L}^{{\alpha}}\) :

First-order coefficient of α contribution to C L (1/rad)

\(C_{L}^{{\delta_{e}}}\) :

First-order coefficient of δ e contribution to C L (1/rad)

\(C_{L}^{0}\) :

Constant term in C L

C M,α :

Contribution to moment due to angle of attack

\(C_{M,{\delta_{e}}}\) :

Control surface contribution to moment

\(C_{M,\alpha}^{{\alpha^{i}}}\) :

ith-order coefficient of α contribution to C M,α (1/radi)

\(C_{M,\alpha}^{0}\) :

Constant term in C M,α

\(C_{T}^{{\alpha^{i}}}\) :

ith-order coefficient of α contribution to C T (1/radi)

\(\bar{c}\) :

Mean aerodynamics chord (m)

c e :

Elevator coefficient in \(C_{M,{\delta_{e}}}\) (1/rad)

D :

Drag (N)

g :

Acceleration due to gravity (m/s2)

h :

Altitude (m)

h ref :

Reference command for altitude (m)

I :

Moment of inertia (kg m2)

L :

Lift (N)

M :

Pitching moment (N m)

m :

Vehicle mass (kg)

Q :

Pitch rate (rad/s)

S :

Reference area (m2)

T :

Thrust (N)

V :

Velocity (m/s)

V ref :

Reference command for velocity (m/s)

α :

Angle of attack (rad)

β i :

Fuel-to-air ratio contribution to \(C_{T}^{{\alpha^{i}}}\) (1/radi)

β i :

Constant term in \(C_{T}^{{\alpha^{i}}}\) (1/radi)

δ e :

Elevator deflection (rad)

ζ :

Damping ratio for the Φ dynamics

θ :

Pitch angle (rad)

\(\bar{\rho}\) :

Air density (kg/m3)

ρ 0 :

Parameter in the air density model (kg/m3)

Φ :

Fuel-to-air ratio

Φ c :

Commanded value of Φ

ω :

Natural frequency for the Φ dynamics

References

  1. Shtessel, Y., McDuffie, J., Jackson, M., Hall, C., Gallaher, M., Krupp, D., Hendrix, N.D.: Sliding mode control of the X-33 vehicle in launch and re-entry modes. In: Proceedings of AIAA Conference on Guidance, Navigation, and Control, Boston, Massachusetts (1998). AIAA paper 1998-4414

    Google Scholar 

  2. Recasens, J.J., Chu, Q.P., Mulder, J.A.: Robust model predictive control of a feedback linearized system for a lifting-body re-entry vehicle. In: Proceedings of AIAA Conference and Exhibit on Guidance, Navigation, and Control, San Francisco, California (2005). AIAA paper 2005-6147

    Google Scholar 

  3. da Costa, R.R., Chu, Q.P., Mulder, J.A.: Reentry flight controller design using nonlinear dynamic inversion. J. Spacecr. Rockets 40(1), 64–71 (2003)

    Article  Google Scholar 

  4. Juliana, S., Chu, Q.P., Mulder, J.A., van Baten, T.J.: Flight control of atmospheric re-entry vehicle with non-linear dynamic inversion. In: Proceedings of AIAA Conference and Exhibit on Guidance, Navigation, and Control, Rhode Island (2004). AIAA paper 2004-5330

    Google Scholar 

  5. Georgie, J., Valasek, J.: Evaluation of longitudinal desired dynamics for dynamic-inversion controlled generic reentry vehicles. J. Guid. Control Dyn. 26(5), 811–819 (2003)

    Article  Google Scholar 

  6. Wallner, E.M., Well, K.H.: Attitude control of a reentry vehicle with internal dynamics. J. Guid. Control Dyn. 26(6), 846–854 (2003)

    Article  Google Scholar 

  7. Wu, S.F., Engelen, C.J.H., Babuska, R., Chu, Q.P., Mulder, J.A.: Intelligent flight controller design with fuzzy logic for an atmospheric re-entry vehicle. In: Proceedings of 38th of Aerospace Sciences Meeting and Exhibit, Reno, Nevada (2000). AIAA paper 2000-0174

    Google Scholar 

  8. Farrell, J., Sharma, M., Polycarpou, M.: Backstepping-based flight control with adaptive function approximation. J. Guid. Control Dyn. 28(6), 1089–1102 (2005)

    Article  Google Scholar 

  9. Shaughnessy, J.D., Pinckney, S.Z., Mcminn, J.D., Cruz, C.I., Kelley, M.L.: Hypersonic vehicle simulation model: winged-cone configuration. In: NASA Langley Research Center, Rept. 102610, Hampton, Virginia (1990)

    Google Scholar 

  10. Wang, Q., Stengel, R.F.: Robust nonlinear control of a hypersonic aircraft. J. Guid. Control Dyn. 23(4), 577–585 (2000)

    Article  Google Scholar 

  11. Mirmirani, M.D., Wu, C., Clark, A., Choi, S., Kuipers, M.: Modeling for control of a generic airbreathing hypersonic vehicle. In: Proceedings of AIAA Conference on Guidance, Navigation, and Control Conference, Hilton Head, South Carolina (2005). AIAA paper 2005-6256

    Google Scholar 

  12. Clark, A., Wu, C., Mirmirani, M.D., Choi, S., Kuipers, M.: Development of an airframe-propulsion integrated generic hypersonic vehicle model. In: Proceedings of 44th Aerospace Sciences Meeting and Exhibit, Reno, Nevada (2006). AIAA paper 2006-218

    Google Scholar 

  13. Kuipers, M., Mirmirani, M.D., Ioannou, P.A., Huo, Y.: Adaptive control of an aeroelastic airbreathing hypersonic cruise vehicle. In: Proceedings of AIAA Conference and Exhibit on Guidance, Navigation, and Control. Hilton Head, South, Carolina (2007). AIAA paper 2007-6326

    Google Scholar 

  14. Bolender, M.A., Doman, D.B.: Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. J. Spacecr. Rockets 44(2), 374–387 (2007)

    Article  Google Scholar 

  15. Parker, J.T., Serrani, A., Yurkovich, S., Bolender, M.A., Doman, D.B.: Control-oriented modeling of an airbreathing hypersonic vehicle. J. Guid. Control Dyn. 30(3), 856–869 (2007)

    Article  Google Scholar 

  16. Marrison, C.I., Stengel, R.F.: Design of robust control systems for a hypersonic aircraft. J. Guid. Control Dyn. 21(1), 58–63 (1998)

    Article  MATH  Google Scholar 

  17. Ataei-Esfahani, A., Wang, Q.: Nonlinear control design of a hypersonic aircraft using sum-of-squares method. In: Proceedings of the 2007 American Control Conference, New York, pp. 5278–5283 (2007)

    Chapter  Google Scholar 

  18. Buschek, H., Anthony, J.C.: Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. J. Guid. Control Dyn. 20(1), 42–48 (1997)

    Article  Google Scholar 

  19. Cai, G.B., Duan, G.R., Hu, C.H., Zhou, B.: Tracking control for air-breathing hypersonic cruise vehicle based on tangent linearization approach. J. Syst. Eng. Electron. 21(3), 469–475 (2010)

    Google Scholar 

  20. Ataei-Esfahani, A., Wang, Q.: Non-linear control of an uncertain hypersonic aircraft model using robust sum-of-squares method. IET Control Theory Appl. 6(2), 203–215 (2012)

    Article  MathSciNet  Google Scholar 

  21. Xu, B., Wang, D., Sun, F., Shi, Z.: Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn. 70(1), 269–278 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Xu, H.J., Mirmirani, M.D., Ioannou, P.A.: Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control Dyn. 27(5), 829–838 (2004)

    Article  Google Scholar 

  23. Fidan, B., Kuipers, M., Ioannou, P.A., Mirmirani, M.D.: Longitudinal motion control of air-breathing hypersonic vehicle based on time-varying models. In: Proceedings of 14th AIAA International Conference on Space Planes and Hypersonic Systems and Technologies, Canberra, Australia (2006). AIAA paper 2006-8074

    Google Scholar 

  24. Huo, Y., Mirmirani, M.D., Ioannou, P.A., Kuipers, M.: Altitude and velocity tracking control for an airbreathing hypersonic cruise vehicle. In: Proceedings of AIAA Conference on Guidance, Navigation, and Control, Keystone, Colorado (2006). AIAA paper 2006-6695

    Google Scholar 

  25. Kuipers, M., Ioannou, P.A., Fidan, B., Mirmirani, M.D.: Robust adaptive multiple model controller design for an airbreathing hypersonic vehicle model. In: Proceedings of AIAA Conference and Exhibit on Guidance, Navigation, and Control, Honolulu, Hawaii (2008). AIAA paper 2008-7142

    Google Scholar 

  26. Williams, T., Bolender, M.A., Doman, D.B., Morataya, O.: An aerothermal flexible mode analysis of a hypersonic vehicle. In: Proceedings of AIAA Conference and Exhibit on Atmospheric Flight Mechanics, Keystone, Colorado (2006). AIAA paper 2006-6647

    Google Scholar 

  27. Fiorentini, L., Serrani, A., Bolender, M.A., Doman, D.B.: Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J. Guid. Control Dyn. 32(2), 401–416 (2009)

    Article  Google Scholar 

  28. Sigthorsson, D.O., Jankovsky, P., Serrani, A., Yurkovich, S., Bolender, M.A., Doman, D.B.: Robust linear output feedback control of an air-breathing hypersonic vehicle. J. Guid. Control Dyn. 31(4), 1052–1066 (2008)

    Article  Google Scholar 

  29. Li, H., Cheng, Y., Si, Y., Gao, H.: Reference tracking control for flexible airbreathing hypersonic vehicle with actuator delay and uncertainty. J. Syst. Eng. Electron. 22(1), 141–145 (2011)

    MATH  Google Scholar 

  30. Li, H., Wu, L., Si, Y., Gao, H., Hu, X.: Multi-objective fault-tolerant output tracking control of a flexible air-breathing hypersonic vehicle. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 224(6), 647–667 (2010)

    Article  Google Scholar 

  31. Groves, K.P., Sigthorsson, D.O., Serrani, A., Yurkovich, S., Bolender, M.A., Doman, D.B.: Reference command tracking for a linearized model of an air-breathing hypersonic vehicle. In: Proceedings of AIAA Conference on Guidance, Navigation, and Control, Hilton Head, South Carolina (2005). AIAA paper 2005-6144

    Google Scholar 

  32. Wilcox, Z.D., MacKunis, W., Bhat, S., Lind, R., Dixon, W.E.: Lyapunov-based exponential tracking control of a hypersonic aircraft with aerothermoelastic effects. J. Guid. Control Dyn. 33(4), 1213–1224 (2010)

    Article  Google Scholar 

  33. Gibson, T.E., Crespo, L.G., Annaswamy, A.M.: Adaptive control of hypersonic vehicles in the presence of modeling uncertainties. In: Proceedings of the 2009 American Control Conference, St. Louis, Missouri, pp. 3178–3183 (2009)

    Chapter  Google Scholar 

  34. Somanath, A.: Adaptive control of hypersonic vehicles in presence of actuation uncertainties. Ph.D. dissertation, Aeronautics and Astronautics Dept., Massachusetts Institute of Technology, Cambridge, Massachusetts (2010)

  35. Fiorentini, L., Serrani, A.: Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model. Automatica 48(7), 1248–1261 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Filippov, A.F.: Differential Equations with Discontinuous Right Hand Sides. Kluwer Academic, Dordrecht (1988)

    Book  MATH  Google Scholar 

  37. Filippov, A.F.: Differential equations with discontinuous right-hand side. Trans. Am. Math. Soc. 42(2), 191–231 (1998)

    Google Scholar 

  38. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  39. Kueon, Y.S.: Fuzzy-neural-sliding mode controller and its applications to the vehicle anti-lock braking systems. In: Proceedings of the International IEEE/IAS Conference on Industrial Automation and Control: Emerging Technologies, Taipei, Taiwan, pp. 391–398 (1995)

    Chapter  Google Scholar 

  40. Camacho, O., Smith, C., Moreno, W.: Development of an internal model sliding mode controller. Ind. Eng. Chem. Res. 42(3), 568–573 (2003)

    Article  Google Scholar 

  41. Kim, N.I., Lee, C.W., Chang, P.H.: Sliding mode control with perturbation estimation: application to motion control of parallel manipulator. Control Eng. Pract. 6(11), 1321–1330 (1998)

    Article  Google Scholar 

  42. Camacho, O.: A predictive approach based-sliding mode control. In: Proceedings of the 15th IFAC Triennial World Congress B’02, Barcelona, Spain, pp. 1321–1330 (2002)

    Google Scholar 

  43. Slotine, J.J.E., Hedrick, J., Misawa, E.: On sliding observers for nonlinear systems. J. Dyn. Syst.-Trans. ASME 109(2), 245–252 (1987)

    Article  MATH  Google Scholar 

  44. Wang, G.B., Peng, S.S., Huang, H.P.: A sliding observer for nonlinear process control. Chem. Eng. Sci. 52(5), 787–805 (1997)

    Article  Google Scholar 

  45. Canudas de Wit, C., Slotine, J.J.E.: Sliding observers for robot manipulators. Automatica 27(5), 859–864 (1991)

    Article  MathSciNet  Google Scholar 

  46. Liu, Q., Yu, D.R., Wang, Z.Q.: Sliding-mode observer design for a hypersonic vehicle. Acta Aeronaut. Astronaut. Sin. 25(6), 588–592 (2004)

    Google Scholar 

  47. Bolender, M.A.: An overview on dynamics and controls modeling of hypersonic vehicles. In: Proceedings of the 2009 American Control Conference, pp. 2507–2512. St. Louis, Missouri (2009)

    Chapter  Google Scholar 

  48. Chavez, F., Schmidt, D.: Analytical aeropropulsive/aeroelastic hypersonic vehicle model with dynamic analysis. J. Guid. Control Dyn. 17(6), 1308–1319 (1994)

    Article  MATH  Google Scholar 

  49. Fiorentini, L.: Nonlinear adaptive controller design for air-breathing hypersonic vehicles. Ph.D. dissertation, Electrical and Computer Engineering Dept., The Ohio State University, Columbus, Ohio (2010)

  50. Gao, G., Wang, J.: Reference command tracking control for an air-breathing hypersonic vehicle with parametric uncertainties. J. Franklin Inst. 350(5), 1155–1188 (2013)

    Article  MathSciNet  Google Scholar 

  51. Gao, G., Wang, J., Wang, X.: Robust tracking control for an air-breathing hypersonic vehicle with input constraints. Int. J. Syst. Sci. (2013). doi:10.1080/00207721.2013.771758

    Google Scholar 

  52. Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-0780-4

    Google Scholar 

  53. Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  54. Coleman, T.F., Li, Y.: On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Math. Program. 67(2), 189–224 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants 61074026 and 90916003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, G., Wang, J. Observer-based fault-tolerant control for an air-breathing hypersonic vehicle model. Nonlinear Dyn 76, 409–430 (2014). https://doi.org/10.1007/s11071-013-1135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1135-x

Keywords

Navigation