Skip to main content
Log in

Bifurcation of limit cycles, classification of centers and isochronicity for a class of non-analytic quintic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 16 November 2013

Abstract

Inspired by Llibre and Vallls (in J. Math. Anal. Appl. 357:427–437, 2009), the conditions of center and isochronous center at the origin for a class of non-analytic quintic systems are studied in this paper. By a transformation, we first transform the systems into analytic systems, then sufficient and necessary conditions for the origin of the systems being a center are obtained. The fact that 11 limit circles could be bifurcated is proved. A complete classification of the sufficient and necessary conditions is given for the origin of the systems being an isochronous center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamarque, C., Touzé, C., Thomas, O.: An upper bound for validity limits of asymptotic analytical approaches based on normal form theory. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0584-y

    Google Scholar 

  2. Pascal, M.: New limit cycles of dry friction oscillators under harmonic load. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0545-5

    MathSciNet  Google Scholar 

  3. Chavarriga, J., Giné, J., Garcia, I.: Isochronous centers of s linear center perturbed by fourth degree homogeneous polynomial. Bull. Sci. Math. 123, 77–96 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chavarriga, J., Giné, J., Garcia, I.: Isochronous centers of s linear center perturbed by fifth degree homogeneous polynomial. Bull. Sci. Math. 126, 351–368 (2000)

    MATH  Google Scholar 

  5. Cairó, L., Giné, J., Llibre, J.: A class of reversible cubic systems with an isochronous center. Comput. Math. Appl. 38, 39–53 (1999)

    Article  MATH  Google Scholar 

  6. Gasull, A., Manosa, V.: An explicit expression of the first Lyapunov and period constants with applications. J. Math. Anal. Appl. 211, 190–212 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Llibre, J., Valls, C.: Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities. J. Differ. Equ. 246, 2192–2204 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Llibre, J., Valls, C.: Classification of the centers and isochronous centers for a class of quartic-like systems. Nonlinear Anal. 71, 3119–3128 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Llibre, J., Valls, C.: Classification of the centers, their cyclicity and isochronicity for the generalized quadratic polynomial differential systems. J. Math. Anal. Appl. 357, 427–437 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Llibre, J., Valls, C.: Classification of the centers, of their cyclicity and isochronicity for two classes of generalized quintic polynomial differential systems. Nonlinear Differ. Equ. Appl. 16, 657–679 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu, Y.: The generalized focal values and bifurcations of limit circles for quasi-quadratic system. Acta Math. Sin. 45, 671–682 (2002) (in Chinese)

    Article  MATH  Google Scholar 

  12. Liu, Y., Li, J., Huang, W.: Singular Point Values, Center Problem and Bifurcations Os Limit Circles of Two Dimensional Differential Autonomous Systems, pp. 162–190. Science Press, Beijing (2009)

    Google Scholar 

  13. Liu, Y., Chen, H.: Formulas of singular point quantities and the first 10 saddle quantities for a class of cubic system. Acta Math. Appl. Sin. 25, 295–302 (2002) (in Chinese)

    MATH  MathSciNet  Google Scholar 

  14. Liu, Y., Huang, W.: A new method to determine isochronous center conditions for polynomial differential systems. Bull. Sci. Math. 127, 133–148 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, Y., Li, J.: Theory of values of singular point in complex autonomous differential system. Sci. China Ser. A 3, 245–255 (1989)

    Google Scholar 

  16. Liu, Y., Li, J.: Theory of values of singular point in complex autonomous differential system. Sci. China Ser. A 3, 245–255 (1989)

    Google Scholar 

Download references

Acknowledgements

This research is partially supported by the National Nature Science Foundation of China (11201211, 11371373, 11101126) and Nature Science Foundation of Shandong Province (ZR2012AL04) and Applied Mathematics Enhancement Program of Linyi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Feng.

Appendices

Appendix A

The recursive formulas to compute singular point quantities at the origin of system (16):

c[0,0]=1;

when (k=j>0) or k<0, or j<0,

c[k,j]=0;

else

$$\begin{aligned} c[k,j]&=\frac{1}{2(j-k)}\bigl(-a_{31}jc[-2+k,-1+j]\\ &\quad{}- b_{22}jc[-2+k,-1+j]\\ &\quad {}+a_{31}kc[-2+k,-1+j]\\ &\quad{}+b_{22}kc[-2+k,-1+j]\\ &\quad {}+2a_{31}rc[-2+k,-1+j]\\ &\quad{}- 2b_{22}rc[-2+k,-1+j]\\ &\quad {}-b_{22}jrc[-2+k,-1+j]\\ &\quad{}+a_{31}jrc[-2+k,-1+j]\\ &\quad {}+a_{31}krc[-2+k,-1+j]\\ &\quad{}- b_{22}krc[-2+k,-1+j]\\ &\quad {}-a_{30}jc[-2+k,j]\\ &\quad{}- b_{12}jc[-2+k,j]+a_{30}kc[-2+k,j]\\ &\quad{}+2a_{30}rc[-2+k,j]+b_{12}kc[-2+k,j]\\ &\quad{}- 2b_{12}rc[-2+k,j]+a_{30}jrc[-2+k,j]\\ &\quad{}- b_{12}jrc[-2+k,j]+a_{30}krc[-2+k,j]\\ &\quad{}- b_{12}krc[-2+k,j]\\ &\quad {}-a_{22}jc[-1+k,-2+j]\\ &\quad{}- b_{31}jc[-1+k,-2+j]\\ &\quad {}+a_{22}kc[-1+k,-2+j]\\ &\quad{}+b_{31}kc[-1+k,-2+j]\\ &\quad {}-2b_{31}rc[-1+k,-2+j]\\ &\quad{}+a_{22}jrc[-1+k,-2+j]\\ &\quad {}-b_{31}jrc[-1+k,-2+j]\\ &\quad{}+a_{22}krc[-1+k,-2+j]\\ &\quad {}-b_{31}krc[-1+k,-2+j]\\ &\quad{}- a_{21}jc[-1+k,-1+j]\\ &\quad {}-b_{21}jc[-1+k,-1+j]\\ &\quad{}+a_{21}kc[-1+k,-1+j]\\ &\quad {}+b_{21}kc[-1+k,-1+j]\\ &\quad{}+2a_{21}rc[-1+k,-1+j]\\ &\quad {}-2b_{21}rc[-1+k,-1+j]\\ &\quad{}+a_{21}jrc[-1+k,-1+j]\\ &\quad {}-b_{21}jrc[-1+k,-1+j]\\ &\quad{}+a_{21}krc[-1+k,-1+j]\\ &\quad {}-b_{21}krc[-1+k,-1+j]\\ &\quad{}- a_{12}jc[k,-2+j]-b_{30}jc[k,-2+j]\\ &\quad{}+a_{12}kc[k,-2+j]+b_{30}kc[k,-2+j]\\ &\quad{}+2a_{12}rc[k,-2+j]-2b_{30}rc[k,-2+j]\\ &\quad{}+a_{12}jrc[k,-2+j]-b_{30}jrc[k,-2+j]\\ &\quad{}+a_{12}krc[k,-2+j]-b_{30}krc[k,-2+j]\\ &\quad{}+2a_{22}rc[-1+k,-2+j]\bigr), \end{aligned}$$
$$\begin{aligned} \mu_k&=r\bigl(a_{31}c[-2+k,-1+k]\\ &\quad {}-b_{22}c[-2+k,-1+k]\\ &\quad{}- b_{12}c[-2+k,k]+a_{30}c[-2+k,k]\\ &\quad{}+a_{22}c[-1+k,-2+k]\\ &\quad {}-b_{31}c[-1+k,-2+k]\\ &\quad{}+a_{21}c[-1+k,-1+k]\\ &\quad {}-b_{21}c[-1+k,-1+k]\\ &\quad{}+a_{12}c[k,-2+k]-b_{30}c[k,-2+k]\bigr). \end{aligned}$$

Appendix B

The recursive formulas to compute period constants of the origin of system (16):

c′[1,0]=d′[1,0]=1;c′[0,1]=d′[0,1]=0;

if k<0 or j<0 or (j>0 and k=j+1) then c′[k,j]=0,d′[k,j]=0;

else

$$\begin{aligned} c'[k,j]&=\frac{1}{j+1-k} \bigl(\bigl(-b_{22}(-1+j) \\ &\quad{}+a_{31}(-2+k)\bigr)e[-2+k,-1+j] \\ &\quad {}+\bigl(-b_{12}j +a_{30}(-2+k)\bigr)e[-2+k,j] \\ &\quad {}+\bigl(-b_{31}(-2+j) \\ &\quad{}+a_{22}(-1+k)\bigr)e[-1+k,-2+j] \\ &\quad {}+\bigl(-b_{21}(-1+j) \\ &\quad{}+a_{21}(-1+k)\bigr)e[-1+k,-1+j] \\ &\quad {}+\bigl(-b_{30}(-2+j) +a_{12}k\bigr)e[k,-2+j] \bigr), \end{aligned}$$
$$\begin{aligned} d'[k,j]&=\frac{1}{j+1-k}\bigl(\bigl(-a_{22}(-1+j) \\ &\quad{}+b_{31}(-2+k)\bigr)d[-2+k,-1+j] \\ &\quad {}+\bigl(-a_{12}j +b_{30}(-2+k)\bigr)d[-2+k,j] \\ &\quad {}+\bigl(-a_{31}(-2+j) \\ &\quad{}+b_{22}(-1+k)\bigr)d[-1+k,-2+j] \\ &\quad {}+\bigl(-a_{21}(-1+j) \\ &\quad{}+b_{21}(-1+k)\bigr)d[-1+k,-1+j] \\ &\quad{}+\bigl(-a_{30}(-2+j) +b_{12}k\bigr)d[k,-2+j]\bigr), \end{aligned}$$
$$\begin{aligned} p'[j]&=\bigl(a_{31}(-1+j) \\ &\quad {}-b_{22}(-1+j)\bigr)e[-1+j,-1+j] \\ &\quad{}+\bigl(a_{30}(-1+j)-b_{12}j\bigr)e[-1+j,j] \\ &\quad{}+\bigl(-b_{31}(-2+j)+a_{22}j\bigr)e[j,-2+j] \\ &\quad{}+\bigl(-b_{21}(-1+j)+a_{21}j\bigr)e[j,-1+j] \\ &\quad{}+\bigl(-b_{30}(-2+j) \\ &\quad {}+a_{12}(1+j)\bigr)e[1+j,-2+j], \\ q'[j]&=\bigl(-a_{22}(-1+j) \\ &\quad {}+b_{31}(-1+j)\bigr)d[-1+j,-1+j] \\ &\quad{}+\bigl(b_{30}(-1+j)-a_{12}j\bigr)d[-1+j,j] \\ &\quad{}+\bigl(-a_{31}(-2+j)+b_{22}j\bigr)d[j,-2+j] \\ &\quad{}+\bigl(-a_{21}(-1+j)+b_{21}j\bigr)d[j,-1+j] \\ &\quad{}+\bigl(-a_{30}(-2+j) \\ &\quad {}+b_{12}(1+j)\bigr)d[1+j,-2+j]. \\ &\tau_m=p[m]+q[m]=p'[m]+q'[m]. \end{aligned}$$

Appendix C

The first eight point quantities at the origin of system (16) are as follows:

$$\begin{aligned} & u_1 =(a_{11}-b_{11})r,\\ & u_2=(a_{22}-b_{22})r,\\ & u_3=-(a_{12}a_{21}-b_{12}b_{21})r,\\ & u_4=-(a_{04}a_{40}-b_{04}b_{40})r. \end{aligned}$$

Case 1 When a 21 b 21 a 40 b 40≠0, let a 12=pb 21,b 12=pa 21,a 04=qb 40,b 04=qa 40, then

$$u_5=\bigl(a_{31}b_{21}^2-a_{21}^2b_{31} \bigr) (-1+p)r(1+p-2r+2pr). $$

Subcase 1.1 Let \((-1+p)r(1+p-2r+2pr)\neq 0, a_{31}=ka_{21}^{2}, b_{31}=k b_{21}^{2}\),

$$u_6=-\bigl(a_{40}b_{21}^4-a_{21}^4b_{40}\bigr)k^2(-1+q)r. $$

If k≠0,q=1,

$$\begin{aligned} u_7& =-\bigl(a_{40}b_{21}^4-a_{21}^4b_{40} \bigr) (-1+p)k r(3+3p-8r+8pr), \\ u_8& =\frac{24(a_{40}b_{21}^4-a_{21}^4b_{40})r^2(54b_{11}k+288b_{11}k r+35r^2+384b_{11}kr^2)}{(3+8r)^4}, \end{aligned}$$
$$\begin{aligned} u_9& =-\frac {96(a_{40}b_{21}^4-a_{21}^4b_{40})r^2}{5(3+8r)^4}\bigl(-135b_{22}k \\ &\quad {} +72a_{21}b_{21}k^2-720b_{22}kr+384a_{21}b_{21}k^2r \\ &\quad {} -175b_{11}r^2-960b_{22}kr^2+512a_{21}b_{21}k^2r^2 \bigr), \end{aligned}$$
$$\begin{aligned} u_{10}&=\frac {7}{(114303+8r)^4}\bigl(94608a_{21}b_{21}k^3 \\ &\quad {}+1009152a_{21}b_{21}k^3r+4036608a_{21}b_{21}k^3r^2 \\ &\quad {}+7176192a_{21}b_{21}k^3r^3+111125r^4 \\ &\quad {}+4784128a_{21}b_{21}k^3r^4 \bigr), \\ u_{11}&=-\frac {4(a_{40}b_{21}^4-a_{21}^4b_{40})r^2}{417195(3+8r)^6}\bigl(4379546232a_{40}b_{40}k \\ &\quad {}+46715159808a_{40}b_{40}kr \\ &\quad {}+186860639232a_{40}b_{40}kr^2 \\ &\quad {}+332196691968a_{40}b_{40}kr^3 \\ &\quad {}-11814392845a_{21}b_{21}r^4 \\ &\quad {}+221464461312a_{40}b_{40}kr^4\bigr). \end{aligned}$$

If k=0,q≠1,

$$\begin{aligned} u_7&=0, \\ u_8& =-\frac{1}{48}\bigl(a_{40}b_{21}^4-a_{21}^4b_{40} \bigr)r(1+p-r+pr) \\ &\quad {}\times(1+p-5r+5pr) (3+3p-7r+7pr) \\ &\quad {}\times(3-5p+5q-3pq+r-pr-qr+pqr), \\ u_9& =\frac {(-8+3m)b_{11}}{12(1+mr)^3}\bigl(a_{40}b_{21}^4-a_{21}^4b_{40} \bigr) \\ &\quad {}\times\bigl(53-55m+8m^2\bigr)r^4 \\ &\quad {}\times(3-5p+5q-3pq+r-pr-qr+pqr), \end{aligned}$$
$$\begin{aligned} u_{10}&=\frac {b_{22}(a_{40}b_{21}^4-a_{21}^4b_{40})(-3+m)(35-31m+4m^2)r^4}{2(1+mr)^3} \\ &\quad {}\times(3-5p+5q-3pq+r-pr-qr+pqr), \\ u_{11}&=\frac{a_{21}b_{21}(-a_{40}b_{21}^4+a_{21}^4b_{40})}{30(1+mr)^5} \\ &\quad {}\times\bigl(65870-97508m+31371m^2+1898m^3 \\ &\quad {}-1271m^4+60m^5\bigr)\times r^6 \\ &\quad {}\times(3-5p+5q-3pq+r-pr-qr+pqr). \end{aligned}$$

Subcase 1.2 Let \(a_{31}b_{21}^{2}\neq a_{21}^{2}b_{31}, p=1\),

$$\begin{aligned} & u_6=- \bigl(a_{40}b_{31}^2-a_{31}^2b_{40} \bigr) (-1+q)r, \\ & \mathrm{let}~a_{31}^2=ka_{40},b_{31}^2=kb_{40}, \\ & u_7=3 \bigl(a_{40}b_{21}^2b_{31}-a_{21}^2a_{31}b_{40} \bigr) (-1+q)r, \\ & \mathrm{let}~a_{31}=na_{40}b_{21}^2,b_{31}=na_{21}^2b_{40}, \\ & u_8=- \bigl(a_{40}b_{21}^4-a_{21}^4b_{40} \bigr) (-1+q)r. \end{aligned}$$

Case 2 When a 21 b 21≠0,a 40=b 40=0, let a 12=pb 21,b 12=pa 21, then

$$u_5=\bigl(a_{31}b_{21}^2-a_{21}^2b_{31} \bigr) (-1+p)r(1+p-2r+2pr). $$

Subcase 2.1 Let \(a_{31}=ka_{21}^{2}, b_{31}=kb_{21}^{2}, p\neq1\)

$$\begin{aligned} u_6&= \bigl(a_{04}a_{21}^4-b_{04}b_{21}^4 \bigr)k^2r, \\ u_7&=0, \\ u_8&=\frac{1}{48} \bigl(a_{04}a_{21}^4-b_{04}b_{21}^4 \bigr)r(5-3p-r+pr) \\ &\quad {}\times (1+p-r+pr) (1+p-5r+5pr) \\ &\quad {}\times(3+3p-7r+7pr), \\ u_9&=-\frac{b_{11}(a_{04}a_{21}^4-b_{04}b_{21}^4)(-8+3m)}{12(1+mr)^3} \\ &\quad {}\times \bigl(53-55m+8m^2 \bigr)r^4(5-3p-r+pr), \end{aligned}$$
$$\begin{aligned} u_{10}&=-\frac{(a_{04}a_{21}^4-b_{04}b_{21}^4)b_{22}(-3+m)}{2(1+mr)^3} \\ &\quad {}\times \bigl(35-31m+4m^2 \bigr)r^4(5-3p-r+pr), \\ u_{11}&=\frac {a_{21}b_{21}(a_{04}a_{21}^4-b_{04}b_{21}^4)r^6(5-3p-r+pr)}{30(1+mr)^5} \\ &\quad {}\times \bigl(65870-97508m+31371m^2+1898m^3 \\ &\quad {}-1271m^4+60m^5 \bigr); \end{aligned}$$

where m=1,5 or \(\frac{7}{3}\).

Subcase 2.2 Let \(a_{31}b_{21}^{2}\neq a_{21}^{2}b_{31}, p=1\)

$$\begin{aligned} & u_6=\bigl(a_{04}a_{31}^2-b_{04}b_{31}^2 \bigr)r, \\ & \mathrm{let}~a_{04}=kb_{31}^2,b_{04}=ka_{31}^2 \\ & u_7=3 a_{31}b_{31}\bigl(a_{31}b_{21}^2-a_{21}^2 b_{31}\bigr)kr. \end{aligned}$$

Case 3 When a 21=b 21=0,a 40 b 40≠0, let a 04=qb 40,b 04=qa 40, then

$$u_5=\bigl(a_{12}^2a_{31}-b_{12}^2 b_{31}\bigr)r(1+2r). $$

Subcase 3.1 When a 12 b 12≠0, let \(a_{31}=pb_{12}^{2}, b_{31}=pa_{12}^{2}\), then

$$u_6=-\bigl(a_{12}^4a_{40}-b_{12}^4b_{40} \bigr)p^2(-1+q)r. $$

If p=0,q≠1,

$$\begin{aligned} & u_7=0, \\ & u_8=-\frac{1}{48} \bigl(a_{12}^4a_{40}-b_{12}^4b_{40} \bigr)r(1+r) (1+5r) \\ & \hphantom{u_8=} {}\times(3+7r) (-5 - 3 q - r + q r), \\ &u_9=\frac{1}{96}b_{11} \bigl(a_{12}^4a_{40}-b_{12}^4b_{40} \bigr)r(3+8 r) \\ & \hphantom{u_8=} {}\times(-5-3q-r+qr) \bigl(8+55r + 53 r^2 \bigr), \\ & u_{10}=\frac{1}{16}b_{22} \bigl(a_{12}^4a_{40}-b_{12}^4b_{40} \bigr)r(1 + 3 r) \\ & \hphantom{u_{10}=} {}\times(-5 - 3 q - r +q r) \bigl(4 + 31 r + 35 r^2 \bigr), \\ & u_{11}=\frac{1}{960}a_{12}b_{12} \bigl(a_{12}^4a_{40}-b_{12}^4b_{40} \bigr)\\ & \hphantom{u_{10}=} {}\times r(-5-3q-r+qr) \\ & \hphantom{u_{10}=} {}\times \bigl(-60-1271r-1898r^2+31371r^3 \\ &\hphantom{u_{10}=} {}+97508 r^4 + 65870 r^5 \bigr); \end{aligned}$$

If q=1,p≠0,

$$\begin{aligned} & u_7=-\bigl(a_{12}^4a_{40}-b_{12}^4b_{40} \bigr)pr(3+8r), \\ & u_8=\frac{3(a_{12}^4a_{40}-b_{12}^4b_{40})(35 + 1536 b_{11}p)}{8192}, \end{aligned}$$
$$\begin{aligned} & u_9=-\frac{3(a_{12}^4a_{40}-b_{12}^4b_{40})(-175b_{11}- 3840 b_{22}p+2048 a_{12}b_{12} p^2)}{10240}, \end{aligned}$$
$$\begin{aligned} & u_{10}=\frac{(a_{12}^4a_{40}-b_{12}^4b_{40})(1143 b_{22}+208 a_{12}b_{12} p)}{16384}. \end{aligned}$$

Subcase 3.2 When a 12=b 12=0, then

$$u_6=-\bigl(a_{40}b_{31}^2-a_{31}^2b_{40} \bigr) (-1 + q)r. $$

Case 4 When a 21=b 21=a 40=b 40=0, then

$$u_5=\bigl(a_{12}^2a_{31}-b_{12}^2 b_{31}\bigr)r(1+2r). $$

Subcase 4.1 When a 12 b 12≠0, let \(a_{31}=pb_{12}^{2}\), \(b_{31}=pa_{12}^{2}\), then

$$\begin{aligned} & u_6=-\bigl(a_{12}^4b_{04}-a_{04}b_{12}^4 \bigr)p^2 r, \\ & u_7=0, \\ & u_8=-\frac{1}{48}\bigl(a_{12}^4b_{04}-a_{04}b_{12}^4 \bigr) (-3 + r) r \\ &\hphantom{u_8}\quad {}\times(1 + r) (1 + 5 r) (3 + 7 r), \\ & u_9=\frac{1}{3360}b_{11}\bigl(a_{12}^4b_{04}-a_{04}b_{12}^4 \bigr) (-3 + r) \\ &\hphantom{u_8}\quad {}\times r\bigl(432 + 2585 r + 3203 r^2\bigr), \\ & u_{10}=-\frac{1}{16}\bigl(a_{12}^4b_{04}-a_{04}b_{12}^4 \bigr)b_{22}(-3+r)r \\ & \hphantom{u_{10}}\quad \times\bigl(5 + 32 r + 43 r^2 \bigr), \\ & u_{11}=-\frac{1}{39200}a_{12}b_{12} \bigl(a_{12}^4b_{04}-a_{04}b_{12}^4 \bigr) \\ &\hphantom{u_{11}}\quad \times\bigl(32397 + 242990 r + 382093 r^2\bigr). \end{aligned}$$

Subcase 4.2 When a 12=b 12=0, then

$$u_6=\bigl(a_{31}^2a_{04}-b_{04}b_{31}^2 \bigr)r. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, L., Jianlong, Q. & Li, J. Bifurcation of limit cycles, classification of centers and isochronicity for a class of non-analytic quintic systems. Nonlinear Dyn 76, 183–197 (2014). https://doi.org/10.1007/s11071-013-1120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1120-4

Keywords

Navigation