Skip to main content
Log in

Dynamic analysis of a tethered satellite system with a moving mass

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a dynamic analysis of a tethered satellite system with a moving mass. A dynamic model with four degrees of freedom, i.e., a two-piece dumbbell model, is established for tethered satellites conveying a mass between them along the tether length. This model includes two satellites and a moving mass, treated as particles in a single orbital plane, which are connected by massless, straight tethers. The equations of motion are derived by using Lagrange’s equations. From the equations of motion, the dynamic response of the system when the moving mass travels along the tether connecting the two satellites is computed and analyzed. We investigate the global tendencies of the libration angle difference (between the two sections of tether) with respect to the changes in the system parameters, such as the initial libration angle, size (i.e. mass) of the moving mass, velocity of the moving mass, and tether length. We also present an elliptic orbit case and show that the libration angles and their difference increase as orbital eccentricity increases. Finally, our results show that a one-piece dumbbell model is qualitatively valid for studying the system under certain conditions, such as when the initial libration angles, moving mass velocity, and moving mass size are small, the tether length is large, and the mass ratio of the two satellites is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kirchgraber, U., Manz, U., Stoffer, D.: Rigorous proof of chaotic behaviour in a dumbbell satellite model. J. Math. Anal. Appl. 251(2), 897–911 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cho, S., Lovell, T.A., Cochran, J.E., Cicci, D.A.: Approximate solutions for tethered satellite motion. J. Guid. Control Dyn. 24(4), 746–754 (2001)

    Article  Google Scholar 

  3. Nakanishi, K., Kojima, H., Watanabe, T.: Trajectories of in-plane periodic solutions of tethered satellite system projected on van der Pol planes. Acta Astronaut. 68(7–8), 1024–1030 (2011)

    Article  Google Scholar 

  4. Mantri, P., Mazzoleni, A.P., Padgett, D.A.: Parametric study of deployment of tethered satellite systems. J. Spacecr. Rockets 44(2), 412–424 (2007)

    Article  Google Scholar 

  5. Williams, P.: Libration control of tethered satellites in elliptical orbits. J. Spacecr. Rockets 43(2), 476–479 (2006)

    Article  Google Scholar 

  6. Wen, H., Jin, D.P., Hu, H.Y.: Advances in dynamics and control of tethered satellite systems. Acta Mech. Sin. 24(3), 229–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Steindl, A., Troger, H.: Optimal control of deployment of a tethered subsatellite. Nonlinear Dyn. 31(3), 257–274 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wen, H., Jin, D.P., Hu, H.Y.: Optimal feedback control of the deployment of a tethered subsatellite subject to perturbations. Nonlinear Dyn. 51(4), 501–514 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jin, D.P., Hu, H.Y.: Optimal control of a tethered subsatellite of three degrees of freedom. Nonlinear Dyn. 46(1–2), 161–178 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Williams, P.: Deployment/retrieval optimization for flexible tethered satellite systems. Nonlinear Dyn. 52(1–2), 159–179 (2008)

    Article  MATH  Google Scholar 

  11. Cohen, S.S., Misra, A.K.: The effect of climber transit on the space elevator dynamics. Acta Astronaut. 64(5–6), 538–553 (2009)

    Article  Google Scholar 

  12. Woo, P., Misra, A.K.: Dynamics of a partial space elevator with multiple climbers. Acta Astronaut. 67(7–8), 753–763 (2010)

    Article  Google Scholar 

  13. Williams, P., Ockels, W.: Climber motion optimization for the tethered space elevator. Acta Astronaut. 66(9–10), 1458–1467 (2010)

    Article  Google Scholar 

  14. Steindl, A., Troger, H.: Is the sky-hook configuration stable? Nonlinear Dyn. 40(4), 419–431 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fujii, H.A., Watanabe, T., Kusagaya, T., Sato, D., Ohta, M.: Dynamics of a flexible space tether equipped with a crawler mass. J. Guid. Control Dyn. 31(2), 436–440 (2008)

    Article  Google Scholar 

  16. Kojima, H., Sugimoto, Y., Furukawa, Y.: Experimental study on dynamics and control of tethered satellite systems with climber. Acta Astronaut. 69(1–2), 96–108 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0017408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintai Chung.

Appendix

Appendix

The mass matrix of (17) is a 4×4 matrix given by

$$ \mathbf{M} = [m_{ij}]\quad \mbox{for }i,\quad j = 1, 2, 3, 4 $$
(29)

where

$$\begin{aligned} &{m_{11} = m_{1} + m_{2} + m,} \\ &{m_{12} = m_{21} = - (m_{2} + m)L_{1}\sin \theta_{1} - m_{2}L_{2}\sin \theta_{2},} \\ &{m_{13} = m_{31} = - (m_{2} + m)L_{1} \sin \theta_{1},} \\ &{ m_{14} = m_{41} = - m_{2}L_{2}\sin \theta_{2},} \\ &{ \begin{aligned} m_{22} &= (m_{1} + m_{2} + m)r^{2} \\ &\quad+ (m_{2} + m)L_{1}(L_{1} + 2r\cos \theta_{1}) \\ &\quad+ m_{2}L_{2}\bigl[L_{2} + 2r \cos \theta_{2} + 2L_{1}\cos (\theta_{2} - \theta_{1})\bigr], \end{aligned}} \\ &{ \begin{aligned}[t] m_{23} &= m_{32} \\ &= (m_{2} + m)L_{1}(L_{1} + r\cos \theta_{1}) \\ &\quad+ m_{2}L_{1}L_{2} \cos (\theta_{2} - \theta_{1}), \end{aligned}} \\ &{ \begin{aligned} m_{24} & = m_{42}\\ & = m_{2}L_{2} \bigl[L_{2} + r\cos \theta_{2} + L_{1}\cos ( \theta_{2} - \theta_{1})\bigr], \end{aligned}} \\ &{m_{33} = (m_{2} + m)L_{1}^{2},} \\ &{m_{34} = m_{43} = m_{2}L_{1}L_{2} \cos (\theta_{2} - \theta_{1}), } \\ &{m_{44} = m_{2}L_{2}^{2}} \end{aligned}$$
(30)

The nonlinear internal force vector of (17) is a 4×1 column vector given by

$$ \mathbf{N} = \{ N_{i} \}^{\mathrm{T}}\quad \mbox{for }i = 1, 2, 3, 4 $$
(31)

where

$$\begin{aligned} &{ \begin{aligned}[b] N_{1} &= - (m_{1} + m_{2} + m)r\dot{ \psi}^{2} \\ &\quad- (m_{2} + m) \bigl\{ \bigl[ - \dot{V} + L_{1}(\dot{\psi} + \dot{\theta}_{1})^{2}\bigr] \cos \theta_{1} \\ &\quad+ 2V(\dot{\psi} + \dot{\theta}_{1})\sin \theta_{1} \bigr\} \\ &\quad - m_{2}\bigl[\dot{V} + L_{2}(\dot{\psi} + \dot{ \theta}_{2})^{2}\cos \theta_{2} \\ &\quad- 2V(\dot{\psi} + \dot{\theta}_{2})\sin \theta_{2}\bigr] + GMm_{1} / r^{2} \\ &\quad+ GMm(r + L_{1}\cos \theta_{1}) / R_{m}^{3}\\ &\quad + GMm_{2}(r + L_{1}\cos \theta_{1} + L_{2}\cos \theta_{2}) / R_{2}^{3} \end{aligned}} \end{aligned}$$
(32)
$$\begin{aligned} &{ \begin{aligned}[b] N_{2} &= 2(m_{1} + m_{2} + m)r\dot{r}\dot{\psi} \\ &\quad+ (m_{2} + m) \{ 2L_{1}V(\dot{\psi} + \dot{ \theta}_{1}) \\ &\quad+ 2\bigl[L_{1}\dot{r}\dot{\psi} + Vr(\dot{ \psi} + \dot{\theta}_{1})\bigr]\cos \theta_{1} \\ &\quad + \bigl[\dot{V}r - L_{1}\bigl(2r\dot{\psi} \dot{ \theta}_{1} + r\dot{\theta}_{1}^{2}\bigr)\bigr] \sin \theta_{1} \} \\ &\quad+ m_{2} \bigl\{ - 2L_{2}V(\dot{\psi} + \dot{\theta}_{2}) \\ &\quad - \bigl[2Vr(\dot{\psi} + \dot{ \theta}_{2}) - 2L_{2}\dot{r}\dot{\psi} \bigr]\cos \theta_{2} \\ &\quad- \bigl[\dot{V}r + L_{2}\bigl(2r\dot{\psi} \dot{\theta}_{2} + r\dot{\theta}_{2}^{2}\bigr)\bigr]\sin \theta_{2}\\ & \quad+ \bigl[2L_{2}V(\dot{\psi} + \dot{\theta}_{1}) - 2L_{1}V(\dot{\psi} + \dot{\theta}_{2})\bigr]\\ &\quad\times \cos ( \theta_{2} - \theta_{1}) \\ &\quad - \bigl[L\dot{V} + L_{1}L_{2}(\dot{ \theta}_{2} - \dot{\theta}_{1}) (2\dot{\psi} + \dot{ \theta}_{1} + \dot{\theta}_{2})\bigr]\\ &\quad\times\sin ( \theta_{2} - \theta_{1}) \bigr\} \end{aligned}} \end{aligned}$$
(33)
$$\begin{aligned} &{ \begin{aligned}[b] N_{3} &= (m_{2} + m)L_{1}\bigl[2V(\dot{\psi} + \dot{\theta}_{1}) \\ &\quad+ 2\dot{r}\dot{\psi} \cos \theta_{1} + r \dot{\psi}^{2}\sin \theta_{1}\bigr]\\ &\quad + m_{2}L_{1} \bigl\{ \bigl[ - 2V(\dot{\psi} + \dot{\theta}_{2})\bigr]\cos ( \theta_{2} - \theta_{1}) \\ &\quad - \bigl[\dot{V} + L_{2}(\dot{\psi} + \dot{ \theta}_{2})^{2}\bigr]\sin (\theta_{2} - \theta_{1}) \bigr\} \\ &\quad- GMmL_{1}r\sin \theta_{1} / R_{m}^{3} \\ &\quad- GMm_{2}L_{1}\bigl[r\sin \theta_{1} - L_{2}\sin (\theta_{2} - \theta_{1})\bigr] / R_{2}^{3} \end{aligned}} \\ \end{aligned}$$
(34)
$$\begin{aligned} &{ \begin{aligned}[b] N_{4} &= m_{2}L_{2} \bigl\{ - 2V(\dot{\psi} + \dot{ \theta}_{2}) + 2\dot{r}\dot{\psi} \cos \theta_{2} \\ &\quad + r\dot{\psi}^{2}\sin \theta_{2} + 2V(\dot{\psi} + \dot{ \theta}_{1})\cos (\theta_{2} - \theta_{1}) \\ &\quad - \bigl[\dot{V} - L_{1}(\dot{\psi} + \dot{ \theta}_{1})^{2}\bigr]\sin (\theta_{2} - \theta_{1}) \bigr\} \\ &\quad - GMm_{2}L_{2}\bigl[r\sin \theta_{2} + L_{1}\sin (\theta_{2} - \theta_{1})\bigr] / R_{2}^{3} \end{aligned}} \end{aligned}$$
(35)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, W., Mazzoleni, A.P. & Chung, J. Dynamic analysis of a tethered satellite system with a moving mass. Nonlinear Dyn 75, 267–281 (2014). https://doi.org/10.1007/s11071-013-1064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1064-8

Keywords

Navigation