Skip to main content
Log in

Fractional order modeling of rotor skin effect in induction machines

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a fractional Park model which is intended to characterize skin effect of squirrel cage induction machines. Usual modeling of skin effect is based on a ladder network; it is demonstrated that a fractional impedance is an alternative to this ladder network. The fractional Park’s model has been validated by output error identification. A methodology has been proposed to select the more appropriate fractional model of the rotor, respecting the diffusive nature of skin effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Das, S.: Functional Fractional Calculus. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  2. Hartley, T.T., Lorenzo, C.L.: Dynamics and control of initialized fractional order system. Nonlinear Dyn. 29, 201–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  4. Petras, I.: Fractional Order Non Linear Systems: Modelling, Analysis and Simulation. Springer, Berlin (2011)

    Book  Google Scholar 

  5. Tenreiro Machado, J.A., Galhano, A.M.S.F.: Fractional order inductive phenomena based on the skin effect. Nonlinear Dyn. 68(1–2), 107–115 (2012)

    Article  MathSciNet  Google Scholar 

  6. Oustaloup, A.: La commande CRONE. Hermès, Paris (1991)

    MATH  Google Scholar 

  7. Lin, J.: Modélisation et identification des systèmes d’ordre non entier. Ph.D. thesis, Université de Poitiers, France (2001)

  8. Benchellal, A.: Modélisation des interfaces de diffusion à l’aide d’opérateurs d’intégration fractionnaire. Ph.D. thesis, Université de Poitiers, France (2008)

  9. Terorde, G.: Electrical Drives and Drives and Control Techniques. Acco, Leuven (2004)

    Google Scholar 

  10. Canat, S.: Contribution à la modélisation dynamique d’ordre non entier de la machine asynchrone à cage. Ph.D. thesis, France (2005)

  11. Kabbaj, H.: Identification d’un modèle type circuit prenant en compte les effets de fréquences dans une machine asynchrone à cage d’écureuil. Ph.D. thesis, INPT, France (1997)

  12. Bose, B.K.: Power Electronics and AC Drives. Prentice Hall, New York (1986)

    Google Scholar 

  13. Zaninelli, D., Zanotti, P.: Simplified frequency dependent model for inductions machines. Electr. Mach. Power Syst. 22, 727–742 (1994)

    Article  Google Scholar 

  14. Poloujadoff, M.: The theory of three phase induction squirrel cage rotors. Electr. Mach. Power Syst. 13, 245–264 (1987)

    Article  Google Scholar 

  15. Klingshirn, E.A., Jordan, H.E.: Simulation of polyphase induction machines with deep rotor bars. IEEE Trans. Power Appar. Syst. 89(6), 1038–1043 (1970)

    Article  Google Scholar 

  16. Ferfra, M.: Contribution à la modélisation et l’identification de la machine asynchrone. Ph.D. thesis, Université Laval, Québec (1993)

  17. Shehata, M.A., Hentschel, F.: Effect of current displacement consideration on the behavior of inverter-fed squirrel-cage induction motors. Electr. Mach. Power Syst. 22, 381–393 (1994)

    Article  Google Scholar 

  18. Retiere, N., Ivanes, M.: Modeling of electrical machines by implicit derivative half-order systems. IEEE Power Eng. Rev. 18(9), 62–64 (1998)

    Google Scholar 

  19. Canat, S., Faucher, J.: Modeling, identification and simulation of induction machine with fractional derivative. In: Le Mehauté, A., Tenreiro Machado, J.A., Trigeassou, J.C., Sabatier, J. (eds.) Fractional Differentiation and Its Applications, pp. 459–470 (2005)

    Google Scholar 

  20. Benchellal, A., Bachir, S., Poinot, T., Trigeassou, J.C.: Identification of a non integer model of induction machines. In: Le Mehauté, A., Tenreiro Machado, J.A., Trigeassou, J.C., Sabatier, J. (eds.) Fractional Differentiation and Its Applications, pp. 471–482 (2005)

    Google Scholar 

  21. Riu, D., Retiere, N.: Implicit half order systems utilisation for diffusion phenomenon modelling. In: Le Mehauté, A., Tenreiro Machado, J.A., Trigeassou, J.C., Sabatier, J. (eds.) Fractional Differentiation and Its Applications, pp. 447–457 (2005)

    Google Scholar 

  22. Jalloul, A., Jellassi, K., Melchior, P., Trigeassou, J.C.: Fractional modeling of rotor skin effect in induction machines. In: 4th IFAC Workshop on Fractional Differentiation and Its Applications, University of Extremadura, Badajoz, Spain, October 18–20 (2010)

    Google Scholar 

  23. Montseny, G.: Diffusive representation of pseudo differential time operators. ESAIM Proc. 5, 159–175 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jalloul, A., Khaled, J., Trigeassou, J.C., Melchior, P.: A fractional order approach to the modeling of induction machine. Int. Rev. Model. Simul. 4(4), 1522–1532 (2011). Part A

    Google Scholar 

  25. Richalet, J., Rault, A., Pouliquen, R.: Identification des processus par la méthode du modèle. Gordon & Breach, New York (1971)

    Google Scholar 

  26. Ljung, L.: System Identification Theory for the User. Prentice Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  27. Trigeassou, J.C.: Recherche de modèles expérimentaux assistée par ordinateur. Lavoisier, Paris (1988)

    Google Scholar 

  28. Poinot, T., Trigeassou, J.C.: Identification of fractional systems using an output error technique. Nonlinear Dyn. 38, 133–154 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marquardt, D.W.: An algorithm for least-squares estimation of non-linear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  30. Trigeassou, J.C., Poinot, T., Lin, J., Oustaloupand, A., Levron, F.: Modeling and identification of a non integer order system. In: ECC’99 European Control Conference, Karlsruhe, Germany (1999)

    Google Scholar 

  31. Jalloul, A.: Modélisation et identification des effets de fréquence dans la machine asynchrone par approche d’ordre non entier. Ph.D. thesis, Université Tunis El Manar, Tunisia (2012)

Download references

Acknowledgements

This work was supported by the Tunisian Ministry of High Education, Research and Technology.

Experimental data have been provided by the LAII Laboratory of Poitiers University (France). They have already been used by Lin Jun during his Ph.D. research works [7].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khaled Jelassi or Pierre Melchior.

Appendices

Appendix 1

Consider a fractional order system such as:

$$ Y(s) = H_{n}(s) E(s) $$
(24)

where

$$ H_{n}(s) = \frac{b_{0}}{a_{0} + s^{n}} = L\bigl\{ h_{n}(t) \bigr\} $$
(25)

This system can be represented by a frequency distributed model (refer to [23, 31]):

$$ \left\{\begin{array}{@{}l} \frac{\partial x(w,t)}{\partial t}=-w x(w,t)+e(t)\\[2mm] y(t)=\int^{\infty}_{0}\mu(w)x(w,t)\,dw \end{array}\right. $$
(26)

and

$$ h_n(t)=\int^{\infty}_{0}\mu(w)e^{-wt}\,dw $$
(27)

with

$$ \mu(w) = \frac{b_{0}\frac{\sin(n\pi)}{\pi} w^{n}}{w^{2n} + 2a_{0}\cos (n\pi)w^{n} + a_{0}^{2}} $$
(28)

where 0<n<1, μ(w) is called frequency weighting function.

This continuous frequency weighted model is not directly usable. A practical model is obtained by frequency discretization of μ(w), where the function μ(w) is replaced by a multiple step function with K steps (see Fig. 24).

Fig. 24
figure 24

Frequency discretization of μ(w)

For an elementary step, the height is μ(w k ), and the width is Δw k . Let c k be the weight of the kth element.

After a frequency discretization of μ(w) we obtain

$$ h_{n}(t) \cong\sum_{k = 1}^{K} \mu(w_{k})e^{ - w_{k}t} \Delta w_{k} $$
(29)

Let us define

$$ \mu(w_{k})\Delta w_{k} = c_{k} $$
(30)

thus

$$ h_{n}(t) \cong\sum_{k = 1}^{K} c_{k}e^{ - w_{k}t} $$
(31)

where \(c_{k}e^{ - w_{k}t}\) is the impulse response of a first order system \(\frac{c_{k}}{s+w_{k}}\).

This means that h n (t) is an infinite (K≫1) sum of impulse responses and

$$ H_{n}(s) = L\bigl\{ h_{n}(t) \bigr\} \cong\sum _{k = 1}^{K} \frac{c_{k}}{s + w_{k}} $$
(32)

We are interested by the electrical case where

$$ y(t) = i(t)\qquad e(t) = u(t) $$
(33)

Let

$$ U(s)=Z_n(s)I(s) $$
(34)

or

$$ I(s)=\frac{1}{Z_n(s)}U(s)=\frac{b_0}{a_0+s^n}U(s) $$
(35)

then

$$ Z_n(s)=\frac{a_0}{b_0}+\frac{1}{b_0}s^n $$
(36)

we can write that i(t) is the sum of K elementary currents i k (t):

$$ i(t)=\sum^K_{l=1}i_k(t) $$
(37)

where

$$ I_{k}(s) = \frac{1}{Z_{k}(s)}U(s) $$
(38)

with for each elementary impedance:

$$ Z_{k}(s) = R_{k} + l_{k}s $$
(39)

then

$$ I_{k}(s) = \frac{1}{R_{k} + l_{k}s}U(s) = \frac{\frac{1}{l_{k}}}{s + \frac{R_{k}}{l_{k}}}U(s) $$
(40)

If we define

$$ \left\{\begin{array}{@{}l} c_k=\frac{1}{l_k}\\[2mm] w_k=\frac{R_k}{l_k} \end{array}\right. $$
(41)

then

$$ I_{k}(s) = \frac{c_{k}}{s + w_{k}}U(s) $$
(42)

Finally

(43)

which shows that

$$ \frac{1}{Z_{n}(s)} \cong\sum_{k = 1}^{K} \frac{1}{R_{k} + l_{k}s} $$
(44)

Appendix 2

Consider heat transfer in a plane wall as represented on Fig. 25 (refer to Benchellal [8]).

Fig. 25
figure 25

Heat transfer in a plane wall

ϕ(x,t) (heat flux) and T(x,t) (temperature) verify the heat Partial Differential Equation:

$$ \frac{\partial T(x,t)}{\partial t} = \alpha\frac{\partial ^{2}T(x,t)}{\partial x^{2}} $$
(45)
$$ \phi(x,t) = - \lambda\frac{\partial T(x,t)}{\partial x}\quad\mbox{with}\ \alpha= \lambda/\rho c $$
(46)

The boundary conditions are ϕ(0,t) and T(L,t)=cte, ϕ(0,t) is considered as the input of the system, T(0,t) is the output.

Using Laplace transform, we get

$$ \frac{T(0,s)}{\phi(0,s)} = H(s) = \frac{1}{\lambda S\sqrt{\frac{s}{\alpha}}} \frac{1 - e^{ - 2L\sqrt{\frac{s}{\alpha }} }}{1 + e^{ - 2L\sqrt{\frac{s}{\alpha }} }} $$
(47)

where S: surface of faces A and B.

If s→∞ or equivalently t→0, then

$$ \mathop{H(s)}\limits_{s \to \infty } \to\frac{\sqrt{\alpha}}{\lambda Ss^{0.5}} $$
(48)

which is the characteristic feature of a diffusive phenomenon.

Practically, H(s) can be approximated by \(H_{n}(s) = \frac{b_{0}}{a_{0} + s^{n}}\) (n free) at low and medium frequencies or by \(H_{n_{1},n_{2}}(s) = \frac{b_{0} + b_{1}s^{n_{1}}}{a_{0} + a_{1}s^{n} + s^{n_{1} + n_{2}}}\) (n 1 free, n 2=0.5) on a wide frequency range (see [8] for more details).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalloul, A., Trigeassou, JC., Jelassi, K. et al. Fractional order modeling of rotor skin effect in induction machines. Nonlinear Dyn 73, 801–813 (2013). https://doi.org/10.1007/s11071-013-0833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0833-8

Keywords

Navigation