Skip to main content
Log in

Nonlinear vibrations of a beam with time-varying rigidity and mass

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider asymptotic solutions for nonlinear beams that can be described by a fourth order hyperbolic equation with an integral nonlinearity and some space and time dependent coefficients. These coefficients can describe varying mass and rigidity perturbations. A two-time scales perturbation method reduces this complicated equation to an infinite-dimensional Hamiltonian system for the Fourier modes. An analysis of this system shows that the corresponding dynamics is quasi-periodic and periodic in time if the coefficients are constant. For non-constant coefficients the dynamics changes significantly. For some special non-constant coefficients the Hamiltonian dynamics can be simplified. We obtain a simpler finite-dimensional system. Numerical simulations show existence of new interesting dynamical effects due to resonances between some Fourier modes. These resonances can lead to large oscillations, even for small nonlinearities. The phase portraits which correspond to these resonance cases will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Irschik, H., Holl, H.J.: Mechanics of variable-mass systems—part 1: balance of mass and linear momentum. Appl. Mech. Rev. 57(1–6), 145–160 (2004)

    Article  Google Scholar 

  2. Banks, H.T., Smith, R.C., Wang, Y.: Smart Material Structures: Modeling, Estimation and Control. Masson/Wiley, Paris/Chichester (1996)

    MATH  Google Scholar 

  3. Srinath, D.N., Mittal, S.: Optimal aerodynamic design of airfoils in unsteady viscous flows. Comput. Methods Appl. Mech. Eng. 199(29–32), 1976–1991 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, J.-Y., Pedley, T.J., Altringham, J.D.: A continuous dynamic beam model for swimming fish. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 353, 981–997 (1998)

    Article  Google Scholar 

  5. Fiazza, C., Salumäe, T., Listak, M., Kulikovskis, G., Templeton, R., Akanyeti, O., Megill, W., Fiorini, P.: Biomimetric mechanical design for soft-bodied underwater vehicles. In: IEE Oceans Conference, Sydney, Australia (2010)

    Google Scholar 

  6. Klosner, J.M., Ghandour, E.: The dynamics of a beam of changing cross section. Polytechnic Inst. of Brooklyn, NY Dept. of Aerospace Engn and Applied Mechanics, Report:AD0675139 (June 1968)

  7. Kuiper, G.L., Metrikine, A.V.: Experimental investigation of dynamic stability of a cantilever pipe aspirating fluid. J. Fluids Struct. 24, 541–558 (2008)

    Article  Google Scholar 

  8. Matsumoto, M., Yagi, T., Sakai, S., Ohay, J., Okada, T.: Investigation on steady wind force coefficients of inclined cables and their application to aerodynamics. In: Proceedings of the Fifth International Symposium on Cable Dynamics, Santa Margherita Ligure, Italy, 15–18 September 2003

    Google Scholar 

  9. Abramian, A., Vakulenko, S.: Oscillations of a beam with time varying mass. Nonlinear Dyn. 63(1–2), 135–147 (2010)

    Google Scholar 

  10. Alekseenko, S.V., Markovich, D.M., Evseev, A.R.: Rivulet flow of liquid on the outer surface of inclined cylinder. J. Appl. Mech. Tech. Phys. 38(4), 649–653 (1997)

    Article  Google Scholar 

  11. Lurie, K.A.: An Introduction to the Mathematical Theory of Dynamic Material. Springer, Berlin (2007)

    Google Scholar 

  12. Suweken, G., van Horssen, W.T.: On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part 2: the beam-like case. J. Sound Vib. 267(5–6), 1007–1027 (2003)

    Article  Google Scholar 

  13. Timoshenko, S.: Theory of Elastic Stability. McGraw-Hill, New York (1936)

    Google Scholar 

  14. Poschel, J.: A lecture on the classical KAM-theorem. Proc. Symp. Pure Math. 69, 707–732 (2001). http://www.poschel.de/pbl/kam-1.pdf

    MathSciNet  Google Scholar 

  15. Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct. Anal. Appl. 21, 192–205 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuksin, S.B.: Nearly Integrable Infinite Dimensional Hamiltonian Systems. Lecture Notes in Mathematics, vol. 1556. Springer, Berlin (1993)

    MATH  Google Scholar 

  17. Kuksin, S.B., Poschel, J.: Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143, 149–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bourgain, J.: Quasiperiodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  20. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46, 1409–1498 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Geng, J., You, J.: KAM tori of Hamiltonian perturbations of 1D linear beam equations. J. Math. Anal. Appl. 277, 104–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Boertjens, G.J., van Horssen, W.T.: On interactions of oscillation modes for weakly non-linear undamped elastic beam with an external force. J. Sound Vib. 235, 201–217 (2000)

    Article  Google Scholar 

  23. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1989)

    Google Scholar 

  24. Kauderer, H.: Nichtlineare Mechanik. Springer, Berlin (1958)

    Book  MATH  Google Scholar 

  25. Van der Burgh, A.H.P., Hortono, B., Abramian, A.K.: A new model for the study of rain-wind-induced vibrations of a simple oscillator. Int. J. Non-Linear Mech. 41, 345–358 (2006)

    Article  MATH  Google Scholar 

  26. Van Horssen, W.T., Abramian, A.K., Hortono, B.: On the free vibrations of an oscillator with a periodically time-varying mass. J. Sound Vib. 298, 1166–1172 (2006)

    Article  MATH  Google Scholar 

  27. Körner, T.W.: Fourier Analysis. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  28. Arnold, V.I., Weinstein, A., Vostmann, K.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, Berlin (1997). Appendix 8: Theory of perturbations of conditionally periodic motion, and Kolmogorov’s theorem

    Google Scholar 

  29. Bambusi, D., Berti, M.: A Birkhoff–Lewis type theorem for some Hamiltonian PDEs. SIAM J. Math. Anal. 37, 83–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krylov, N.M., Bogolyubov, N.N.: Methodes approchees de la mecanique non-lineaire dans leurs application. La perturbation des mouvements periodiques de divers phenomenes de resonance s’y rapportant. Kiev (1935)

  31. Mitropol’skii, Yu.A.: An Averaging Method in Nonlinear Mechanics. Naukova Dumka, Kiev (1971) (in Russian)

    Google Scholar 

  32. Dalezkii, Yu.L., Krein, S.G.: Stability of Solutions of Differential Equations in Banach Spaces. Nauka, Moscow (1970)

    Google Scholar 

  33. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)

    MATH  Google Scholar 

  34. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  35. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  36. Tanner, G., Sondergaard, N.: Wave chaos in acoustics and elasticity. J. Phys. A, Math. Theor. 40(50), R443–R509 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant of the Dutch Organization for Scientific Research NWO, by the NATO Collaborative Linkage Grant No. 984143 and by a RFBR grant 10-1-00814.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Abramian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramian, A.K., van Horssen, W.T. & Vakulenko, S.A. Nonlinear vibrations of a beam with time-varying rigidity and mass. Nonlinear Dyn 71, 291–312 (2013). https://doi.org/10.1007/s11071-012-0661-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0661-2

Keywords

Navigation