Skip to main content
Log in

Bounded noise enhanced stability and resonant activation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the escape problem of a Brownian particle over a potential barrier driven by bounded noise, which is different form the common unbounded noise. Some novel stochastic phenomena and results are founded. For weak frequency of bounded noise, the mean first passage time (MFPT) shows a non-monotonic dependence on the intensity of white noise. One remarkable behavior is the phenomenon of co-occurrence of noise-enhanced stability and resonant activation. Another novel finding is that the position of minimum of MFPT about frequency shows monotone non-decreasing or non-increasing function with the variation of amplitude of bounded noise, while the minimum of MFPT monotonously depends on the amplitude of bounded noise. More important, we uncover the relationship of the parameters of bounded noise which induce the occurrence of the phenomenon of resonant activation. Besides, resonant activation can also be induced by simplified bounded noise, called sine-Wiener noise. The behaviors presented in our work driven by bounded noise show distinctive features compared with the ones inspired by the common noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Article  Google Scholar 

  3. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A 14, L453–L457 (1981)

    Article  MathSciNet  Google Scholar 

  4. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–288 (1998)

    Article  Google Scholar 

  5. Mantegna, R.N., Spagnolo, B.: Noise enhanced stability in an unstable system. Phys. Rev. Lett. 76, 563–566 (1996)

    Article  Google Scholar 

  6. Mielke, A.: Noise induced stability in fluctuating, bistable potentials. Phys. Rev. Lett. 84, 818–821 (2000)

    Article  Google Scholar 

  7. Fiasconaro Spagnolo, B., Boccaletti, S.: Signatures of noise-enhanced stability in metastable states. Phys. Rev. E 72, 061110 (2005)

    Article  Google Scholar 

  8. Doering, C.R., Gadoua, J.C.: Resonant activation over a fluctuating barrier. Phys. Rev. Lett. 69, 2318–2321 (1992)

    Article  Google Scholar 

  9. Xu, Y., Wang, X., Zhang, H.Q., Xu, W.: Stochastic stability for nonlinear systems driven by Lévy noise. Nonlinear Dyn. 68, 7–15 (2012)

    Article  MATH  Google Scholar 

  10. Xu, Y., Gu, R.C., Zhang, H.Q., Xu, W., Duan, J.Q.: Stochastic bifurcations in a bistable Duffing–van der Pol oscillator with colored noise. Phys. Rev. E 83, 056215 (2011)

    Article  Google Scholar 

  11. Xu, Y., Ma, S., Zhang, H.Q.: Hopf bifurcation control for stochastic dynamical system with nonlinear random feedback method. Nonlinear Dyn. 65, 77–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marchi, M., Marchesoni, F., Gammaitoni, L., Menichella-Saetta, E., Santucci, S.: Resonant activation in a bistable system. Phys. Rev. E 54, 3479–3487 (1996)

    Article  Google Scholar 

  13. Flomenbom, O., Klafter, J.: Resonant activation in discrete systems. Phys. Rev. E 69, 051109 (2004)

    Article  Google Scholar 

  14. Pankratova, E.V., Polovinkin, A.V., Mosekilde, E.: Resonant activation in a stochastic Hodgkin-Huxley model: interplay between noise and suprathreshold driving effects. Eur. Phys. J. B 45, 391–397 (2005)

    Article  Google Scholar 

  15. Maddox, J.: Surmounting fluctuating barriers. Nature 359, 771 (1992)

    Article  Google Scholar 

  16. Beece, D., Eisenstein, L., Frauenfelder, H., Good, D., Marden, M.C., Reinisch, L., Reynolds, A.H., Sorensen, L.B., Yue, K.T.: Solvent viscosity and protein dynamics. Biochemistry 19, 5147–5157 (1980)

    Article  Google Scholar 

  17. Leibler, S.: Moving forward noisily. Nature 370, 412–413 (1994)

    Article  Google Scholar 

  18. Zurcher, U., Doering, C.R.: Thermally activated escape over fluctuating barriers. Phys. Rev. E 47, 3862–3869 (1993)

    Article  Google Scholar 

  19. Bier, M., Astumian, R.D.: Matching a diffusive and a kinetic approach for escape over a fluctuating barrier. Phys. Rev. Lett. 71, 1649–1652 (1993)

    Article  Google Scholar 

  20. Reimann, P.: Thermally driven escape with fluctuating potentials: a new type of resonant activation. Phys. Rev. Lett. 74, 4576–4579 (1995)

    Article  Google Scholar 

  21. Hänggi, P.: Escape over fluctuating barriers driven by colored noise. Chem. Phys. 180, 157–166 (1994)

    Article  Google Scholar 

  22. Bartussek, R., Madureira, A., Hänggi, P.: Surmounting a fluctuating double well: a numerical study. Phys. Rev. E 52, R2149–R2152 (1995)

    Article  Google Scholar 

  23. Iwaniszewski, J.: Escape over a fluctuating barrier: limits of small and large correlation times. Phys. Rev. E 54, 3173–3184 (1996)

    Article  Google Scholar 

  24. Marchi, M., Marchesoni, F., Gammaitoni, L., Menichella-Saetta, E., Santucci, S.: Resonant activation in a bistable system. Phys. Rev. E 54, 3479–3487 (1996)

    Article  Google Scholar 

  25. Reimann, P., Bartussek, R., Hänggi, P.: Reaction rates when barriers fluctuate: a singular perturbation approach. Chem. Phys. 235, 11–26 (1998)

    Article  Google Scholar 

  26. Marchesoni, F., Gammaitoni, L., Menichella-Saetta, E., Santucci, S.: Thermally activated escape controlled by colored multiplicative noise. Phys. Lett. A 201, 275–280 (1995)

    Article  Google Scholar 

  27. Majee, P., Goswami, G., Bag, B.C.: Colored non-Gaussian noise induced resonant activation. Chem. Phys. Lett. 416, 256–260 (2005)

    Article  Google Scholar 

  28. Dybiec, B., Gudowska-Nowak, E.: Levy stable noise-induced transitions: Stochastic resonance, resonant activation and dynamic hysteresis. J. Stat. Mech. P05004 (2009)

  29. d’Onofrio, A.: Bounded-noise-induced transitions in a tumor-immune system interplay. Phys. Rev. E 81, 021923 (2010)

    Article  MathSciNet  Google Scholar 

  30. d’Onofrio, A., Gandolfi, A.: Resistance to antitumor chemotherapy due to bounded noise induced transitions. Phys. Rev. E 82, 061901 (2010)

    Article  MathSciNet  Google Scholar 

  31. Wedig, W.V.: Invariant measures and Lyapunov exponents for generalized parameter fluctuations. Struct. Saf. 8, 13–25 (1990)

    Article  Google Scholar 

  32. Wedig, W.V.: Iterative schemes for stability problems with non-singular Fokker-Planck equations. Int. J. Non-Linear Mech. 31, 707–715 (1996)

    Article  MATH  Google Scholar 

  33. Dimentberg, M.F.: A stochastic model of parametric excitation of a straight pipe due to slug flow of a two-phase fluid. In: Proceedings of the Fifth International Conference on Flow Induced Vibrations, Brighton, pp. 207–215 (1991)

    Google Scholar 

  34. Dimentberg, M.F.: Stability and sub-critical dynamics of structures with spatially disordered parametric excitation. Probab. Eng. Mech. 7, 131–134 (1992)

    Article  Google Scholar 

  35. Li, Q.C., Lin, Y.K.: New stochastic theory for bridge stability in turbulent flow. J. Eng. Mech. 121, 102–116 (1995)

    Article  Google Scholar 

  36. Bobryk, R.V., Chrzeszczyk, A.: Transitions induced by bounded noise. Physica A 358, 263–272 (2005)

    Article  Google Scholar 

  37. Bobryk, R.V., Chrzeszczyk, A.: Transitions in a Duffing oscillator excited by random noise. Nonlinear Dyn. 51, 541–550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, W.Y., Zhu, W.Q., Huang, Z.L.: Effect of bounded noise on chaotic motion of duffing oscillator under parametric excitation. Chaos Solitons Fractals 12, 527–537 (2001)

    Article  MATH  Google Scholar 

  39. Jin, Y.F., Hu, H.Y.: Principal resonance of a Duffing oscillator with delayed state feedback under narrow-band random parametric excitation. Nonlinear Dyn. 50, 213–227 (2007)

    Article  MATH  Google Scholar 

  40. Gradiner, C.W.: Handbook of Stochastic Methods. Springer, Berlin (1985)

    Google Scholar 

  41. Fiasconaro, A., Spagnolo, B., Ochab-Marcinek, A., Gudowska-Nowak, E.: Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response. Phys. Rev. E 74, 041904 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Grant Nos. 11172233, 10972181, 11102132, and 11202160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Xu, W., Yue, X. et al. Bounded noise enhanced stability and resonant activation. Nonlinear Dyn 70, 2237–2245 (2012). https://doi.org/10.1007/s11071-012-0614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0614-9

Keywords

Navigation