Skip to main content
Log in

Resonant many-mode periodic and chaotic self-sustained aeroelastic vibrations of cantilever plates with geometrical non-linearities in incompressible flow

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The plates interacting with inviscid, incompressible, potential gas flow are analyzed. Many modes interaction is considered to describe self-sustained vibrations of plates. The singular integral equation is solved to obtain gas pressures acting on the plate. The Von Karman equations with respect to three displacements are used to describe the plate geometrical non-linear vibrations. The Galerkin method is applied to each partial differential equation to obtain the finite-degree-of-freedom model of the plate vibrations. Self-sustained vibrations, which take place due to the Hopf bifurcation, are investigated. These vibrations undergo the Naimark–Sacker bifurcation and the periodic motions are transformed into the almost periodic ones. If the stream velocity is increased, almost periodic motions are transformed into chaotic ones. As a result of the internal resonance, the saturation of the vibration mode is observed. The non-linear dynamics of low- and high-aspect-ratio plates is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Albano, E., Rodden, W.P.: A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. AIAA J. 7, 279–285 (1969)

    Article  MATH  Google Scholar 

  2. Katz, J.: Calculation of the aerodynamic forces on automotive lifting surfaces. J. Fluids Eng. 107, 438–443 (1985)

    Article  Google Scholar 

  3. Morino, L., Chen, L.-T., Suciu, E.O.: Steady and oscillatory subsonic and supersonic aerodynamics around complex configuration. AIAA J. 13, 368–374 (1975)

    Article  MATH  Google Scholar 

  4. Morino, L., Kuo, C.-C.: Subsonic potential aerodynamic for complex configurations: a general theory. AIAA J. 12, 191–197 (1974)

    Article  MATH  Google Scholar 

  5. Djojodihardjo, R.H., Widnall, S.E.: A numerical method for the calculation of nonlinear, unsteady lifting potential flow problems. AIAA J. 7, 2001–2009 (1969)

    Article  MATH  Google Scholar 

  6. Hess, J.L.: Review of integral-equation techniques for solving potential-flow problems with emphasis of the surface–source method. Comput. Methods Appl. Mech. Eng. 5, 145–196 (1975)

    Article  MATH  Google Scholar 

  7. Landahl, M.T., Stark, V.J.E.: Numerical lifting-surface theory—problems and progress. AIAA J. 6, 2049–2060 (1968)

    Article  MATH  Google Scholar 

  8. Kenneth, C.H.: Eigenanalysis of unsteady flows about airfoils, cascades, and wings. AIAA J. 32, 2426–2432 (1994)

    Article  MATH  Google Scholar 

  9. Strganac, T.W., Mook, D.T.: Numerical model of unsteady subsonic aeroelastic behavior. AIAA J. 28, 903–909 (1990)

    Article  Google Scholar 

  10. Mook, D.T., Dong, B.: Perspective: numerical simulations of wakes and blade-vortex interaction. J. Fluids Eng. 116, 5–21 (1994)

    Article  Google Scholar 

  11. Preidikman, S., Mook, D.T.: On the development of a passive-damping system for wind-excited oscillations of long-span bridges. J. Wind Eng. Ind. Aerodyn. 77&78, 443–456 (1998)

    Article  Google Scholar 

  12. Hall, B.D., Mook, D.T., Nayfeh, A.H., Preidikman, S.: Novel strategy for suppressing the flutter oscillations of aircraft wings. AIAA J. 39, 1843–1850 (2001)

    Article  Google Scholar 

  13. Fu, Y., Price, W.G.: Interactions between a partially or totally immersed vibrating cantilever plate and the surrounding fluid. J. Sound Vib. 118, 495–513 (1987)

    Article  Google Scholar 

  14. Bakhle, M.A., Reddy, T.S.R., Keith, T.G.: Time domain flutter analysis of cascade using a full-potential solver. AIAA J. 30, 163–170 (1992)

    Article  MATH  Google Scholar 

  15. Watanabe, Y., Isogai, K., Suzuki, S., Sugihara, M.: A theoretical study of paper flutter. J. Fluids Struct. 16, 543–560 (2002)

    Article  Google Scholar 

  16. Guo, C.Q., Paidoussis, M.P.: Stability of rectangular plates with free side-edges in two-dimensional inviscid channel flow. J. Appl. Mech. 67, 171–176 (2000)

    Article  MATH  Google Scholar 

  17. Shahverdi, H., Nobari, A.S., Behbahani-Nejad, M., Haddadpour, H.: An efficient reduced-order modeling approach based on fluid eigenmodes and boundary element method. J. Fluids Struct. 23, 143–153 (2007)

    Article  Google Scholar 

  18. Ellen, C.H.: Stability of clamped rectangular plates in uniform subsonic flow. AIAA J. 10, 1716–1717 (1972)

    Article  Google Scholar 

  19. Kornecki, A., Dowell, E.H., O’Brein, J.: On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J. Sound Vib. 47, 163–178 (1976)

    Article  MATH  Google Scholar 

  20. Huang, L.: Flutter of cantilevered plates in axial flow. J. Fluids Struct. 9, 127–147 (1995)

    Article  Google Scholar 

  21. Shayo, L.K.: The stability of cantilever panels in uniform incompressible flow. J. Sound Vib. 68, 341–350 (1980)

    Article  MATH  Google Scholar 

  22. Dowell, E.H., Curtiss, H.C., Scanlan, R.H., Sisto, F.: A Modern Course in Aeroelasticity. Kluwer Academic, Dordrecht (1995)

    MATH  Google Scholar 

  23. Eloy, C., Souilliez, C., Schouveiler, L.: Flutter of a rectangular plate. J. Fluids Struct. 23, 904–919 (2007)

    Article  Google Scholar 

  24. Balint, T.S., Lucey, A.D.: Instability of a cantilevered flexible plate in viscous channel flow. J. Fluids Struct. 20, 893–912 (2005)

    Article  Google Scholar 

  25. Attar, P.J., Dowell, E.H.: A theoretical and experimental investigation of the effects of a steady angle of attack on the nonlinear flutter of a delta wing plate model. J. Fluids Struct. 17, 243–259 (2003)

    Article  Google Scholar 

  26. Tang, D., Dowell, E.H., Hall, K.C.: Limit cycle oscillations of a cantilevered wing in low subsonic flow. AIAA J. 37, 364–371 (1999)

    Article  Google Scholar 

  27. Tang, D., Dowell, E.H.: Limit cycle oscillations of two-dimensional panels in low subsonic flow. Int. J. Non-Linear Mech. 37, 1199–1209 (2002)

    Article  MATH  Google Scholar 

  28. Tang, D., Henry, J.K., Dowell, E.H.: Limit cycle oscillations of delta wing models in low subsonic flow. AIAA J. 37, 1355–1362 (1999)

    Article  Google Scholar 

  29. Liu, L., Dowell, E.H., Thomas, J.P.: A high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring forces. J. Fluids Struct. 23, 351–363 (2007)

    Article  MATH  Google Scholar 

  30. Liu, L., Dowell, E.H.: The secondary bifurcation of an aeroelastic airfoil motion: effect of high harmonics. Nonlinear Dyn. 37, 31–49 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Coller, B.D., Chamara, P.A.: Structural non-linearities and the nature of the classic flutter instability. J. Sound Vib. 277, 711–739 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Breslavsky, I.D., Strel’nikova, E.A., Avramov, K.V.: Dynamics of shallow shells with geometrical nonlinearity interacting with fluid. Comput. Struct. 89, 496–506 (2011)

    Article  Google Scholar 

  33. Paidoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1. Academic Press, London (1998)

    Google Scholar 

  34. Amabili, M., Touzer, C.: Reduced-order models for nonlinear vibrations of fluid-filled circular cylindrical shells: comparison of POD and asymptotic nonlinear normal modes methods. J. Fluids Struct. 23, 885–903 (2007)

    Article  Google Scholar 

  35. Amabili, M.: Theory and experiments for large-amplitude vibrations of empty and fluid-filled circular cylindrical shells with imperfections. J. Sound Vib. 262, 921–975 (2003)

    Article  Google Scholar 

  36. Belotserkovskii, S.M.: Study of the unsteady aerodynamics of lifting surfaces using the computer. Annu. Rev. Fluid Mech. 9, 469–494 (1977)

    Article  Google Scholar 

  37. Friedmann, P.P.: Renaissance of aeroelasticity and its future. J. Aircr. 36, 105–121 (2002)

    Article  Google Scholar 

  38. Belotserkovskii, S.M., Lifanov, I.K.: Method of Discrete Vortices. CRC Press, Boca Raton (1993)

    Google Scholar 

  39. Avramov, K.V., Tyshkovets, O., Maksymenko-Sheyko, K.V.: Nonlinear dynamics of circular plates with cutouts. R-Function method. J. Vib. Acoust. 132, 205–212 (2010)

    Google Scholar 

  40. Breslavsky, I.D., Avramov, K.V.: Nonlinear modes of cylindrical panels with complex boundaries. R-Function method. Meccanica 46, 817–832 (2011)

    Article  MathSciNet  Google Scholar 

  41. Breslavsky, I.D., Avramov, K.V.: Two modes nonresonance interaction for rectangular plate with geometrical non-linearity. Nonlinear Dyn. 69, 285–294 (2012)

    Article  Google Scholar 

  42. Kobayashi, Y., Leissa, A.W.: Large amplitude free vibration of thick shallow shells supported by shear diaphragms. Int. J. Non-Linear Mech. 30, 57–66 (1995)

    Article  MATH  Google Scholar 

  43. Stavridis, L.T.: Dynamic analysis of shallow shells of rectangular base. J. Sound Vib. 218, 861–882 (1998)

    Article  Google Scholar 

  44. Luo, A.C.J.: An approximate theory for geometrically nonlinear thin plates. Int. J. Solids Struct. 37, 7655–7670 (2000)

    Article  MATH  Google Scholar 

  45. Anlas, G., Elbeyli, O.: Nonlinear vibrations of a simply supported rectangular metallic plate subjected to transverse harmonic excitation in the presence of a one-to-one internal resonance. Nonlinear Dyn. 30, 1–28 (2002)

    Article  MATH  Google Scholar 

  46. Dowell, E.H.: Aeroelasticity of Plates and Shells. Noordhoff, Leyden (1975)

    MATH  Google Scholar 

  47. Katz, J., Plotkin, A.: Low-Speed Aerodynamics. McGraw-Hill, New York (1991)

    Google Scholar 

  48. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1945)

    Google Scholar 

  49. Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Technique. Theory and Applications in Engineering. Springer, Berlin (1984)

    Book  Google Scholar 

  50. Forsching, H.W.: Grundlagen der Aeroelastik. Springer, Berlin (1974). (In German)

    Google Scholar 

  51. Belotserkovskii, S.M., Skripach, B.K.: Aerodynamic Derivatives of Aircrafts and Wings at Subsonic Flows. Nauka, Moscow (1975). (In Russian)

    Google Scholar 

  52. Daito, Y., Matsumoto, M., Araki, K.: Torsional flutter mechanism of two-edge girders for long-span cable-stayed bridge. J. Wind Eng. Ind. Aerodyn. 90, 2127–2141 (2002)

    Article  Google Scholar 

  53. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

  54. Kantor, B.Ja., Naumenko, V., Strel’nikova, E.A., Ventsel, E.: The hypersingular integral equations technique in two-dimensional elasto-plastic analysis. In: International Series on Advanced Boundary Elements, pp. 65–74 (1999)

    Google Scholar 

  55. Preuss, R.D., Suciu, E.O., Morino, L.: Unsteady potential aerodynamics of rotors with applications to horizontal-axis windmills. AIAA J. 18, 385–393 (1980)

    Article  MATH  Google Scholar 

  56. Leissa, A.W.: Vibration of Plates. National Aeronautics and Space Administration, Washington (1969)

    Google Scholar 

  57. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, Berlin (1995)

    MATH  Google Scholar 

  58. Haddow, A.G., Barr, A.D.S., Mook, D.T.: Theoretical and experimental study of modal interaction in a two-degree-of-freedom structures. J. Sound Vib. 97, 451–473 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Avramov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avramov, K.V., Strel’nikova, E.A. & Pierre, C. Resonant many-mode periodic and chaotic self-sustained aeroelastic vibrations of cantilever plates with geometrical non-linearities in incompressible flow. Nonlinear Dyn 70, 1335–1354 (2012). https://doi.org/10.1007/s11071-012-0537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0537-5

Keywords

Navigation