Skip to main content
Log in

Stochastic Hopf bifurcation of quasi-integrable Hamiltonian systems with multi-time-delayed feedback control and wide-band noise excitations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The stochastic Hopf bifurcation of multi-degree-of-freedom (MDOF) quasi-integrable Hamiltonian systems with multi-time-delayed feedback control subject to wide-band noise excitations is studied. First, the time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into an ordinary quasi-integrable Hamiltonian system. The averaged Itô stochastic differential equations are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then the expression for average bifurcation parameter of the averaged system is obtained approximately and a criterion for determining the stochastic Hopf bifurcation induced by time-delayed feedback control forces in the original system using average bifurcation parameter is proposed. An example is worked out in detail to illustrate the criterion and its validity and to show the effect of time delay in feedback control on stochastic Hopf bifurcation of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malek-Zavarei, M., Jamshidi, M.: Time-Delay Systems: Analysis, Optimization and Applications. North-Holland, New York (1987)

    MATH  Google Scholar 

  2. Stepan, G.: Retarded Dynamical Systems: Stability and Characteristic Functions. Longman Scientific and Technical, Essex (1989)

    MATH  Google Scholar 

  3. Kuo, B.C.: Automatic Control Systems. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  4. Hu, H.Y., Wang, Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer, Berlin (2002)

    MATH  Google Scholar 

  5. Agrawal, A.K., Yang, J.N.: Effect of fixed time delay on stability and performance of actively controlled civil engineering structures. Earthquake Eng. Struct. Dyn. 26, 1169–1185 (1997)

    Article  Google Scholar 

  6. Pu, J.P.: Time delay compensation in active control of structures. J. Eng. Mech. 124, 1018–1028 (1998)

    Article  Google Scholar 

  7. Atay, F.M.: Van der Pol’s oscillator under delayed feedback. J. Sound Vib. 218, 333–339 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grigoriu, M.: Control of time delay linear systems with Gaussian white noise. Probab. Eng. Mech. 12, 89–96 (1997)

    Article  Google Scholar 

  9. Paola, M.Di., Pirrotta, A.: Time delay induced effects on control of linear systems under random excitation. Probab. Eng. Mech. 16, 43–51 (2001)

    Article  Google Scholar 

  10. Liu, Z.H., Zhu, W.Q.: Stochastic averaging of quasi-integrable Hamiltonian systems with delayed feedback control. J. Sound Vib. 299, 178–195 (2007)

    Article  MathSciNet  Google Scholar 

  11. Zhu, W.Q., Liu, Z.H.: Response of quasi-integrable Hamiltonian systems with delayed feedback bang-bang control. Nonlinear Dyn. 49, 31–47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Z.H., Zhu, W.Q.: Asymptotic Lyapunov stability with probability one of quasi integrable Hamiltonian systems with delayed feedback control. Automatica 44, 1923–1928 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuznestov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1998)

    Google Scholar 

  14. Hassard, B., Kazarinoff, N., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, London (1981)

    MATH  Google Scholar 

  15. Kalmar-Nagy, T., Stepan, G., Moon, F.C.: Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn. 26, 121–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, J., Chung, K.W.: Effects of time delayed position feedback on a van der Pol–Duffing oscillator. Physica D 180, 17–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stephen, W., Richard, R.: The dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dyn. 30, 205–221 (2002)

    Article  MATH  Google Scholar 

  18. Das, S.L., Chatterjee, A.: Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30, 323–335 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sri Namachchivaya, N.: Stochastic bifurcation. Appl. Math. Comput. 38, 101–159 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Arnold, L., Sri Namachchivaya, N., Schenk-Hoppe, K.R.: Toward and understanding of stochastic Hopf bifurcation: a case study. Int. J. Bifurc. Chaos 6, 1947–1975 (1996)

    Article  MathSciNet  Google Scholar 

  21. Zhu, W.Q., Huang, Z.L.: Stochastic Hopf bifurcation of quasi-nonintegrable Hamiltonian systems. Int. J. Non-Linear Mech. 34, 437–447 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Longtin, A.: Noise-induced transitions at a Hopf bifurcation in a first-order delay-differential equation. Phys. Rev. A 44, 4801–4813 (1991)

    Article  Google Scholar 

  23. Liu, Z.H., Zhu, W.Q.: Stochastic Hopf bifurcation of quasi-integrable Hamiltonian systems with time-delayed feedback control. J. Theor. Appl. Mech. 46(3), 531–550 (2008)

    Google Scholar 

  24. Zhu, W.Q., Huang, Z.L., Yang, Y.Q.: Stochastic averaging of quasi integrable Hamiltonian systems. J. Appl. Mech. 64, 975–984 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, W.Q., Huang, Z.L., Deng, M.L.: Optimal bounded control of first-passage failure of quasi-integrable Hamiltonian systems with wide-band random excitation. Nonlinear Dyn. 33, 189–207 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, Z.L., Zhu, W.Q., Suzuki, Y.: Stochastic averaging of strongly nonlinear oscillators under combined harmonic and white noise excitations. J. Sound Vib. 238, 233–256 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stratonovitch, R.L.: Topics in the Theory of Random Noise, vol. 1. Gordon & Breach, New York (1963)

    Google Scholar 

  28. Khasminskii, R.Z.: A limit theorem for the solutions of differential equations with random right-hand sides. Theory Probab. Appl. 11, 390–405 (1966)

    Article  Google Scholar 

  29. Blankenship, G., Papanicolaou, G.C.: Stability and control of stochastic systems with wide-band disturbances. SIAM J. Appl. Math. 34(3), 437–476 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kushner, H.J.: Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory. MIT Press, Cambridge (1984)

    MATH  Google Scholar 

  31. Lin, Y.K., Cai, G.Q.: Probabilistic Structural Dynamics: Advanced Theory and Applications. McGraw-Hill, New York (1995)

    Google Scholar 

  32. Khasminskii, R.Z.: Sufficient and necessary conditions of almost sure asymptotic stability of a linear stochastic system. Theory Probab. Appl. 12, 144–147 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Q. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z.H., Zhu, W.Q. Stochastic Hopf bifurcation of quasi-integrable Hamiltonian systems with multi-time-delayed feedback control and wide-band noise excitations. Nonlinear Dyn 69, 935–947 (2012). https://doi.org/10.1007/s11071-011-0315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0315-9

Keywords

Navigation