Skip to main content

Advertisement

Log in

Hopf bifurcation and chaos in fractional-order modified hybrid optical system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a chaotic fractional-order modified hybrid optical system is presented. Some basic dynamical properties are further investigated by means of Poincaré mapping, parameter phase portraits, and the largest Lyapunov exponents. Fractional Hopf bifurcation conditions are proposed; it is found that Hopf bifurcation occurs on the proposed system when the fractional-order varies and passes a sequence of critical values. The chaotic motion is validated by the positive Lyapunov exponent. Finally, some numerical simulations are also carried out to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991)

    Article  Google Scholar 

  2. Sun, H.H., Abdelwahab, A.A., Onaral, B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441–444 (1984)

    Article  MATH  Google Scholar 

  3. Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253–265 (1971)

    Article  Google Scholar 

  4. Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)

    Google Scholar 

  5. Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum Levy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)

    Article  Google Scholar 

  6. Julio, C., Gutiérrez, V., Sheng: Fractionalization of optical beams: I. Planar analysis. Opt. Lett. 32(11), 1521–1523 (2007)

    Article  Google Scholar 

  7. Namias, V.: The fractional Fourier transform and its application in quantum mechanics. J. Inst. Math. Appl. 25, 241–265 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ozaktas, H., Mendlovic, D.: Fractional Fourier transforms and their optical implementation: II. J. Opt. Soc. Am. A 10(9), 1975–1981 (1993)

    Google Scholar 

  9. Ozaktas, H., Alevsky, Z., Kutay, M.A.: The Fractional Fourier Transform. Wiley, New York (2001)

    Google Scholar 

  10. Chen, D., Chen, Y.Q., Sheng, H.: Fractional variational optical flow model for motion estimation. In: The 4th IFAC Workshop Fractional Differentiation and Its Application, Badajoz, Spain, Oct., pp. 18–20 (2010)

    Google Scholar 

  11. Julio, C., Gutiérrez, V., Carlos, L.-M.: Nondiffracting vortex beams with continuous orbital angular momentum order dependence. J. Opt. A, Pure Appl. Opt. 10, 1–8 (2008)

    Google Scholar 

  12. Chen, Y., Otis, L., Zhub, Q.: Polarization memory effect in optical coherence tomography and dental imaging application. J. Biomed. Opt. 16(8), 1–7 (2011)

    Article  MATH  Google Scholar 

  13. Hui, K.C., Lai, C.W., Ong, H.C.: Electron-beam-induced optical memory effect in metallized ZnO thin films for the application of optical storage. Thin Solid Films 483(1–2), 222–225 (2005)

    Article  Google Scholar 

  14. Abdelouahab, M., Hamri, N.: A new chaotic attractor from hybrid optical bistable system. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-9994-5

    Google Scholar 

  15. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)

    Article  Google Scholar 

  16. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  17. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordan and Breach, Amsterdam (1993)

    MATH  Google Scholar 

  18. Butzer, P.L., Westphal, U.: An introduction to fractional calculus. In: Hilfer, R. (ed.) Applications of Fractional Calculus in Physics, pp. 1–85. World Scientific, Singapore (2000)

    Chapter  Google Scholar 

  19. Matignon, D.: Stability results in fractional differential equation with applications to control processing. In: Proceedings of the Multiconference on Computational Engineering in Systems and Application IMICS. IEEE-SMC, Lile, France, vol. 2, pp. 963–968 (1996)

    Google Scholar 

  20. Moze, M., Sabatier, J.: LMI tools for stability analysis of fractional systems. In: Proceedings of ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Long Beach, CA, 24–28 Sep. 2011 (2005)

    Google Scholar 

  21. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys. Lett. A 358, 1–4 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tavazoei, M.S., Haeri, M., Attari, M., Bolouki, S., Siami, M.: More details on analysis of fractional-order Van der Pol oscillator. J. Vib. Control 15(6), 803–819 (2009)

    Article  MathSciNet  Google Scholar 

  23. Tavazoei, M.S., Haeri, M., Attari, M.: A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica 45(8), 1886–1890 (2009)

    Article  MATH  Google Scholar 

  24. Tavazoei, M.S.: A note on fractional-order derivatives of periodic functions. Automatica 46, 945–948 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed-Salah Abdelouahab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelouahab, MS., Hamri, NE. & Wang, J. Hopf bifurcation and chaos in fractional-order modified hybrid optical system. Nonlinear Dyn 69, 275–284 (2012). https://doi.org/10.1007/s11071-011-0263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0263-4

Keywords

Navigation