Skip to main content
Log in

Integrable cases in the dynamics of axial gyrostats and adiabatic invariants

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the study of axial gyrostats dynamics. The gyrostat is composed of two rigid bodies: an asymmetric platform and an axisymmetric rotor aligned with the platform principal axis. The paper discusses three types of gyrostats: oblate, prolate, and intermediate. Rotation of the rotor relative to the platform provides a source of small internal angular momentum and does not affect the moment of inertia tensor of the gyrostat. The dynamics of gyrostats without external torque is considered. The dynamics is described by using ordinary differential equations with Andoyer–Deprit canonical variables. For undisturbed motion, when the internal moment is equal to zero, the stationary solutions are found, and their stability is studied. General analytical solutions in terms of elliptic functions are also obtained. These results can be interpreted as the development of the classical Euler case for a solid, when to one degree of freedom—the relative rotation of bodies—is added. For disturbed motion of the gyrostats, when there is a system with slowly varying parameters, the adiabatic invariants are obtained in terms of complete elliptic integrals, which are approximately equal to the first integrals of the disturbed system. The adiabatic invariants remain approximately constant along a trajectory for long time intervals during which the parameter changes considerably. The results of the study can be useful for the analysis of dynamics of dual-spin spacecraft and for studying a chaotic behavior of the spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rumyantsev, V.V.: On the Lyapunov’s methods in the study of stability of motions of rigid bodies with fluid-filled cavities. Adv. Appl. Mech. 8, 183–232 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tong, X., Tabarrok, B., Rimrott, F.: Chaotic motion of an asymmetric gyrostat in the gravitational field. Int. J. Non-Linear Mech. 30, 191–203 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kinsey, K.J., Mingori, D.L., Rand, R.H.: Non-linear control of dual-spin spacecraft during despin through precession phase lock. J. Guid. Control Dyn. 19, 60–67 (1996)

    Article  MATH  Google Scholar 

  4. Hall, C.D.: Escape from gyrostat trap states. J. Guid. Control Dyn. 21, 421–426 (1998)

    Article  Google Scholar 

  5. Hall, C.D., Rand, R.H.: Spinup dynamics of axial dual-spin spacecraft. J. Guid. Control Dyn. 17(1), 30–37 (1994)

    Article  Google Scholar 

  6. Anchev, A.: On the stability of the permanent rotations of a heavy gyrostat. J. Appl. Math. Mech. 26(1), 22–28 (1962)

    Article  Google Scholar 

  7. Kane, T.R.: Solution of the Equations of rotational motion for a class of torque-free gyrostats. AIAA J. 8(6), 1141–1143 (1970)

    Article  Google Scholar 

  8. Elipe, A.: Gyrostats in free rotation. Int. Astron. Union Colloq. 165, 1–8 (1991)

    Google Scholar 

  9. El-Sabaa, F.M.: Periodic solutions and their stability for the problem of gyrostat. Astrophys. Space Sci. 183, 199–213 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cochran, J.E., Shu, P.-H., Rew, S.D.: Attitude motion of asymmetric dual-spin spacecraft. J. Guid. Control Dyn. 5(1), 37–42 (1982)

    Article  MATH  Google Scholar 

  11. Cavas, J.A., Vigueras, A.: An integrable case of rotational motion analogue to that of Lagrange and Poisson for a gyrostat in a Newtonian force field. Celest. Mech. Dyn. Astron. 60, 317–330 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. El-Gohary, A.I.: On the stability of an equilibrium position and rotational motion of a gyrostat. Mech. Res. Commun. 24, 457–462 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. El-Gohary, A.: On the control of programmed motion of a rigid containing moving masses. Int. J. Non-Linear Mech. 35(1), 27–35 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. El-Gohary, A.: On the stability of the relative programmed motion of a satellite gyrostat. Mech. Res. Commun. 25(4), 371–379 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. El-Gohary, A.: Optimal stabilization of the rotational motion of rigid body with the help of rotors. Int. J. Non-Linear Mech. 35(3), 393–403 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. El-Gohary, A., Hassan, S.Z.: On the exponential stability of the permanent rotational motion of a gyrostat. Mech. Res. Commun. 26(4), 479–488 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsogas, V., Kalvouridis, T.J., Mavraganis, A.G.: Equilibrium states of a gyrostat satellite moving in the gravitational field of an annular configuration of N big bodies. Acta Mech. 175(1–4), 181–195 (2005)

    Article  MATH  Google Scholar 

  18. Kalvouridis, T.J.: Stationary solutions of a small gyrostat in the Newtonian field of two massive bodies. Nonlinear Dyn. 61(3), 373–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Balsas, M.C., Jimenez, E.S., Vera, J.A.: The motion of a gyrostat in a central gravitational field: phase portraits of an integrable case. J. Nonlinear Math. Phys. 15, 53–64 (2008)

    Article  MathSciNet  Google Scholar 

  20. Neishtadt, A.I., Pivovarov, M.L.: Separatrix crossing in the dynamics of a dual-spin satellite. J. Appl. Math. Mech. 64, 741–746 (2000)

    Article  MATH  Google Scholar 

  21. Aslanov, V.S., Doroshin, A.V.: Chaotic dynamics of an unbalanced gyrostat. J. Appl. Math. Mech. 74, 524–535 (2010)

    Article  Google Scholar 

  22. Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1986)

    Google Scholar 

  23. Andoyer, H.: Cours de Mechanique Celeste, vol. 1. Gauthier-Villars, Paris (1923)

    Google Scholar 

  24. Deprit, A.: A free rotation of a rigid body studied in the phase plane. Am. J. Phys. 35, 424–428 (1967)

    Article  Google Scholar 

  25. Korn, G., Korn, T.: Mathematical Handbook. McGraw-Hill Book Company, New York (1968)

    Google Scholar 

  26. Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series and Products. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  27. Born, M.: Problem of Atomic Dynamics. Massachusetts Institute of Technology, Cambridge (1926)

    Google Scholar 

  28. Wolfram MathWorldive Mathematics Resource http://mathworld.wolfram.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Aslanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslanov, V.S. Integrable cases in the dynamics of axial gyrostats and adiabatic invariants. Nonlinear Dyn 68, 259–273 (2012). https://doi.org/10.1007/s11071-011-0225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0225-x

Keywords

Navigation