Skip to main content
Log in

Periodic solutions of nonlinear delay differential equations using spectral element method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We extend the temporal spectral element method further to study the periodic orbits of general autonomous nonlinear delay differential equations (DDEs) with one constant delay. Although we describe the approach for one delay to keep the presentation clear, the extension to multiple delays is straightforward. We also show the underlying similarities between this method and the method of collocation. The spectral element method that we present here can be used to find both the periodic orbit and its stability. This is demonstrated with a variety of different examples, namely, the delayed versions of Mackey–Glass equation, Van der Pol equation, and Duffing equation. For each example, we show the method’s convergence behavior using both p and h refinement and we provide comparisons between equal size meshes that have different distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atay, F.: Van der Pol’s oscillator under delayed feedback. J. Sound Vib. 218(2), 333–339 (1998)

    Article  MathSciNet  Google Scholar 

  2. Baker, C., Bocharov, G., Ford, J., Lumb, P., Norton, S., Paul, C., Junt, T., Krebs, P., Ludewig, B.: Computational approaches to parameter estimation and model selection in immunology. J. Comput. Appl. Math. 184(1), 50–76 (2005). doi:10.1016/j.cam.2005.02.003. Special Issue on Mathematics Applied to Immunology

    Article  MathSciNet  MATH  Google Scholar 

  3. Barton, D., Krauskopf, B., Wilson, R.: Collocation schemes for periodic solutions of neutral delay differential equations. J. Differ. Equ. Appl. 12(11), 1087–1101 (2006). doi:10.1080/10236190601045663

    Article  MathSciNet  Google Scholar 

  4. Barton, D., Krauskopf, B., Wilson, R.: Homoclinic bifurcations in a neutral delay model of a transmission line oscillator. Nonlinearity 20(4), 809–829 (2007). doi:10.1088/0951-7715/20/4/001

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellen, A., Zennaro, M.: Numerical Solution of Delay Differential Equations. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  6. Berrut, J., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bobrenkov, O., Khasawneh, F., Butcher, E., Mann, B.: Analysis of milling dynamics for simultaneously engaged cutting teeth. J. Sound Vib. 329(5), 585–606 (2010). doi:10.1016/j.jsv.2009.09.032

    Article  MATH  Google Scholar 

  8. Bocharov, G.A., Rihan, F.A.: Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math. 125(1-2), 183–199 (2000). doi:10.1016/S0377-0427(00)00468-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover, New York (2001)

    MATH  Google Scholar 

  10. Butcher, E., Bobrenkov, O., Bueler, E., Nindujarla, P.: Analysis of milling stability by the Chebyshev collocation method: Algorithm and optimal stable immersion levels. J. Comput. Nonlinear Dyn. 4(3), 031003 (2009). doi:10.1115/1.3124088

    Article  Google Scholar 

  11. Doedel, E., Champneys, A., Fairgrieve, T., Kuznetsov, Y., Sandstede, B., Wang, X.: Auto 97: Continuation and bifurcation software for ordinary differential equations. Available online at: http://indy.cs.concordia.ca/auto/ (1998)

  12. Doedel, E.J., Keller, H.B., Kernévez, J.P.: Numerical analysis and control of bifurcation problems: II. Bifurcation in infinite dimensions. Int. J. Bifurc. Chaos 1(4), 745–772 (1991). doi:10.1142/S0218127491000555

    Article  Google Scholar 

  13. Engelborghs, K., Doedel, E.: Stability of piecewise polynomial collocation for computing periodic solutions of delay differential equations. Numer. Math. 91, 627–648 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Engelborghs, K., Luzyanina, T., ’T Hout, K.J., Roose, D.: Collocation methods for the computation of periodic solutions of delay differential equations. SIAM J. Sci. Comput. 22, 1593–1609 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eslahchi, M., Masjed-Jamei, M., Babolian, E.: On numerical improvement of Gauss-Lobatto quadrature rules. Appl. Math. Comput. 164(3), 707–717 (2005). doi:10.1016/j.amc.2004.04.113

    Article  MathSciNet  MATH  Google Scholar 

  16. Guglielmi, N., Hairer, E.: Implementing Radau IIA methods for stiff delay differential equations. Computing 67(1), 1–12 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guglielmi, N., Hairer, E.: Users’ guide for the code RADAR5—version 2.1. Tech. rep., Università dell’Aquila, Italy (2005)

  18. Guglielmi, N., Hairer, E.: Computing breaking points in implicit delay differential equations. Adv. Comput. Math. 29(3), 229–247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hale, J., Sternberg, N.: Onset of chaos in differential delay equations. J. Comput. Phys. 77(1), 221–239 (1988). doi:10.1016/0021-9991(88)90164-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Hale, J.K., Lunel, S.V.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  21. an der Heiden, U.: Unfolding complexity: hereditory dynamical systems—new bifurcation schemes and high dimensional chaos. In: Nonlinear Dynamics and Chaos: Where Do We Go From Here? IoP, Bristol (2003)

    Google Scholar 

  22. Higham, N.: The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 24(4), 547–556 (2004). doi:10.1093/imanum/24.4.547

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, H., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced duffing oscillator with time delay state feedback. Nonlinear Dyn. 15(4), 311–327 (1998). doi:10.1023/A:1008278526811

    Article  MATH  Google Scholar 

  24. Khasawneh, F., Mann, B.: A spectral element approach for the stability of delay systems. Int. J. Numer. Methods Eng. (2011). doi:10.1002/nme.3122

  25. Khasawneh, F., Mann, B., Insperger, T., Stépán, G.: Increased stability of low-speed turning through a distributed force and continuous delay model. J. Comput. Nonlinear Dyn. 4(4), 041003 (2009)

    Article  Google Scholar 

  26. Krauskopf, B.: Bifurcation analysis of lasers with delay. In: Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, pp. 147–183, Wiley, New Jersey (2005)

    Chapter  Google Scholar 

  27. Lin, G.: Periodic solutions for Van der Pol equation with time delay. Appl. Math. Comput. 187(2), 1187–1198 (2007). doi:10.1016/j.amc.2006.09.032

    Article  MathSciNet  MATH  Google Scholar 

  28. Luzyanina, T., Engelborghs, K.: Computing Floquet multipliers for functional differential equations. Int. J. Bifurc. Chaos 12(12), 2977–2989 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mackey, M., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977). doi:10.1126/science.267326

    Article  Google Scholar 

  30. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319(1-2), 515–530 (2009)

    Article  Google Scholar 

  31. Mann, B.P., Young, K.A.: An empirical approach for delayed oscillator stability and parametric identification. Proc. R. Soc. A 462, 2145–2160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Parter, S.: On the Legendre–Gauss–Lobatto points and weights. J. Sci. Comput. 14(9), 347–355 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Patera, A.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)

    Article  MATH  Google Scholar 

  34. Radde, N.: The impact of time delays on the robustness of biological oscillators and the effect of bifurcations on the inverse problem. EURASIP Journal on Bioinformatics and Systems. Biology 2009, 1–14 (2009). doi:10.1155/2009/327503

    Google Scholar 

  35. Reddy, J.: An Introduction to the Finite Element Method, 2nd edn. McGraw-Hill, New York (1993)

    Google Scholar 

  36. Seydel, R.: Practical Bifurcation and Stability Analysis, 3rd edn. Springer, Berlin (2009). doi:10.1007/978-1-4419-1740-9

    Google Scholar 

  37. Shahverdiev, E., Bayramov, P., Shore, K.: Cascaded and adaptive chaos synchronization in multiple time-delay laser systems. Chaos Solitons Fractals 42(1), 180–186 (2009). doi:10.1016/j.chaos.2008.11.004

    Article  Google Scholar 

  38. Sims, N.D., Mann, B., Huyanan, S.: Analytical prediction of chatter stability for variable pitch and variable helix milling tools. J. Sound Vib. 317, 664–686 (2008)

    Article  Google Scholar 

  39. Stépán, G.: Retarded Dynamical Systems: Stability and Characteristic Functions. Wiley, New York (1989)

    MATH  Google Scholar 

  40. Szalai, R., Stépán, G.: Lobes and lenses in the stability chart of interrupted turning. J. Comput. Nonlinear Dyn. 1, 205–211 (2006)

    Article  Google Scholar 

  41. Vu, T.H., Deeks, A.J.: Use of higher-order shape functions in the scaled boundary finite element method. Int. J. Numer. Methods Eng. 65, 1714–1733 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas A. Khasawneh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khasawneh, F.A., Barton, D.A.W. & Mann, B.P. Periodic solutions of nonlinear delay differential equations using spectral element method. Nonlinear Dyn 67, 641–658 (2012). https://doi.org/10.1007/s11071-011-0017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0017-3

Keywords

Navigation