Skip to main content
Log in

Study on vibration reduction and mobility improvement for the flexible manipulator via redundancy resolution

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The flexible redundant manipulator, i.e., the flexible manipulator with redundant rigid degrees of freedom, possesses the same kinematic redundancy property as the rigid redundant manipulator. Some undesired effects on the flexible redundant manipulator are expected to alleviate via kinematic redundancy. Due to the presence of structural flexibility, a manipulator will inevitably vibrate when performing tasks. Therefore, how to reduce its vibration responses is a significant problem. Moreover, the manipulator’s mobility, i.e., its ability to move, is another important issue, because good mobility is a desirable goal for almost all robotic manipulator systems. In this paper, how to reduce vibration and improve mobility is studied for the flexible redundant manipulator. Firstly, a method for vibration control via redundancy resolution is put forward. Secondly, the self-motions satisfying vibration reduction are analyzed, and its additional optimization ability is revealed. Based on this ability, a strategy is proposed to both reduce vibration and improve mobility for the flexible redundant manipulator. Finally, simulation results demonstrate the effectiveness of this strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitsi, S., Bouzakis, K.D.: Simulation of redundant manipulators for collision avoidance in manufacturing and assembly environments. Mech. Mach. Theory 28(1), 13–21 (1993)

    Article  Google Scholar 

  2. Kireanski, M.V., Petrovic, T.M.: Combined analytical-pseudo inverse kinematic solution for simple redundant manipulators and singularity avoidance. Int. J. Robot. Res. 12(2), 188–196 (1993)

    Article  Google Scholar 

  3. Walker, I.D.: Impact configurations and measures for kinematically redundant and multiple armed robot systems. IEEE Trans. Robot. Autom. 10(5), 670–683 (1994)

    Article  Google Scholar 

  4. Kim, J.O., Khosal, P., Chung, W.K.: Dynamical resolution of redundancy for robot manipulators. J. Mech. Des. 115, 592–598 (1993)

    Article  Google Scholar 

  5. Saglia, J.A., Dai, J.S., et al.: Geometry and kinematic analysis of a redundantly actuated parallel mechanism that eliminates singularities and improves dexterity. J. Mech. Des. 130, 124501 (2008)

    Article  Google Scholar 

  6. Masayuli, S., Hiromu, K., Woo-Keum, et al.: Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution. IEEE Trans. Robot. 24(5), 1131–1142 (2008)

    Article  Google Scholar 

  7. Patel, R.V., Shadpey, R., Ranjbaran, F., et al.: A collision-avoidance scheme for redundant manipulators: Theory and experiments. J. Robot. Syst. 22(12), 737–757 (2005)

    Article  MATH  Google Scholar 

  8. Benosman, M., Le Vey, G.: Control of flexible manipulators: a survey. Robotica 22, 533–545 (2004)

    Article  Google Scholar 

  9. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nguyen, L.A., Walker, I.D., Defigueiredo, R.J.P.: Dynamic control of flexible kinematically redundant robot manipulators. IEEE Trans. Robot. Autom. 8(6), 759–767 (1992)

    Article  Google Scholar 

  11. Bian, Y.: Research on dynamics and control of flexible redundant manipulators. Dissertation for Ph.D., Beihang University (1998)

  12. Yue, S.: Weak-vibration configurations for flexible robot manipulators with kinematic redundancy. Mech. Mach. Theory 35(2), 165–17 (2000)

    Article  MATH  Google Scholar 

  13. Zhang, X.P., Yu, Y.Q.: Motion control of flexible robot manipulators via optimizing redundant configurations. Mech. Mach. Theory 36(7), 883–89 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xu, W.L., Yue, S.G.: Pre-posed configuration of flexible redundant robot manipulators for impact vibration alleviating. IEEE Trans. Ind. Electron. 51(1), 195–200 (2004)

    Article  Google Scholar 

  15. Salisbury, J.K., Craig, J.: Articulated hands: kinematic and force control issues. Int. J. Robot. Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  16. Klein, C.A.: Use of redundancy in the design of robotic systems. In: Hanafusa, H., Inoue, H. (eds.) Robotics Research: The Second International Symposium, pp. 207–214. MIT Press, Cambridge (2010)

    Google Scholar 

  17. Angeles, J., Rojas, A.A.: Manipulator inverse kinematics via condition number minimization and condition. Int. J. Robot. Autom. 2(2), 61–69 (1987)

    Google Scholar 

  18. Yoshikawa, T.: Dynamic manipulability of robotics mechanism. Int. J. Robot. Res. 4(2), 3–9 (1985)

    Article  MathSciNet  Google Scholar 

  19. Klein, C.A., Blaho, B.E.: Dexterity measures for the design and control of kinematically redundant manipulators. Int. J. Robot. Res. 6(2), 72–83 (1987)

    Article  Google Scholar 

  20. Pons, J.L., Ceres, R., et al.: Multifingered dextrous robotics hand design and control: a review. Robotica 17(6), 661–674 (1999)

    Article  Google Scholar 

  21. Gosselin, C., Angeles, J.: Global performance index for the kinematic optimization of robotic manipulators. J. Mech. Transm. Autom. Des. 113(3), 220–226 (1991)

    Google Scholar 

  22. Liu, X.-J., Wang, J.A.: new methodology for optimal kinematic design of parallel mechanisms. Mech. Mach. Theory 42(9), 1210–1224 (2007)

    Article  MATH  Google Scholar 

  23. Bian, Y., Lu, Z.: Method for dynamic modeling of flexible manipulators. Beijing Hangkong Hangtian Daxue Xuebao 25, 486–490 (1999)

    Google Scholar 

  24. Dubey, R.V., Luh, J.Y.S.: Performance measures and their improvement for redundant robots. In: Paul, F.W., Toumi, K.Y. (eds.) Robotics: Theory and Application, California (1986)

    Google Scholar 

  25. Dubey, R.V., Luh, J.Y.S.: Redundant robot control for higher flexibility. In: IEEE International Conference on Robotics and Automation, pp. 1066–1072 (1987)

    Google Scholar 

  26. Chen, W., Zhang, Q., Wu, Z., et al.: Singularity avoidance based on avoiding joint velocities limits for redundant manipulators. Proc. IEEE Int. Conf. Syst. Man Cybern. 4, 3578–3583 (1998)

    Google Scholar 

  27. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Application. McGraw Hill, New York (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, Y., Gao, Z. & Yun, C. Study on vibration reduction and mobility improvement for the flexible manipulator via redundancy resolution. Nonlinear Dyn 65, 359–368 (2011). https://doi.org/10.1007/s11071-010-9897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9897-x

Keywords

Navigation