Skip to main content
Log in

Nonzero mean PDF solution of nonlinear oscillators under external Gaussian white noise

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the nonzero mean stationary probability density function (PDF) solution for nonlinear oscillators under external Gaussian white noise. The PDF solution is governed by the well-known Fokker–Planck–Kolmogorov (FPK) equation and this equation is numerically solved by the exponential-polynomial closure (EPC) method. Different types of oscillators are further investigated in the case of nonzero mean response. Either weak or strong nonlinearity is considered to show the effectiveness of the EPC method. When the polynomial order equals 2, the results of the EPC method are identical with those given by equivalent linearization (EQL) method. These results obtained with the EQL method differ significantly from exact solution or simulated results. When the polynomial order is 4 or 6, the PDFs obtained with the EPC method present a good agreement with the exact solution or simulated results, especially in the tail regions. The numerical analysis also shows that the nonzero mean PDF of the response is nonsymmetrically distributed about its mean unlike the case of the zero mean PDF reported in the references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baber, T.T.: Nonzero mean random vibration of hysteretic systems. ASCE J. Eng. Mech. 110, 1036–1049 (1984)

    Article  Google Scholar 

  2. Roberts, J.B., Spanos, P.D.: Random Vibration and Statistical Linearization. Dover, Mineola (2003)

    MATH  Google Scholar 

  3. Baratta, A., Zuccaro, G.: Analysis of nonlinear oscillators under stochastic excitation by the Fokker-Planck-Kolmogorov equation. Nonlinear Dyn. 5, 255–271 (1994)

    Article  Google Scholar 

  4. Caughey, T.K., Ma, F.: The exact steady-state solution of a class of non-linear stochastic systems. Int. J. Non-Linear Mech. 17, 137–142 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dimentberg, M.F.: An exact solution to a certain non-linear random vibration problem. Int. J. Non-Linear Mech. 17, 231–236 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Huang, Z.L., Jin, X.L., Li, J.Y.: Construction of the stationary probability density for a family of SDOF strongly non-linear stochastic second-order dynamical systems. Int. J. Non-Linear Mech. 43, 563–568 (2008)

    Article  Google Scholar 

  7. Sobczyk, K., Trębicki, J.: Maximum entropy principle and nonlinear stochastic oscillators. Physica A 193, 448–468 (1993)

    Article  MATH  Google Scholar 

  8. Cai, G.Q., Lin, Y.K.: A new approximate solution technique for randomly excited non-linear oscillators. Int. J. Non-Linear Mech. 23, 409–420 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lin, Y.K., Cai, G.Q.: Exact stationary response solution for second order nonlinear systems under parametric and external white-noise excitations: Part II. ASME J. Appl. Mech. 55, 702–705 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 1. Gordon & Breach, New York (1963)

    Google Scholar 

  11. Cai, G.Q., Lin, Y.K.: Random vibration of strongly nonlinear systems. Nonlinear Dyn. 24, 3–15 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Crandall, S.H.: Perturbation techniques for random vibration of nonlinear systems. J. Acoust. Soc. Am. 35, 1700–1705 (1963)

    Article  MathSciNet  Google Scholar 

  13. Dunne, J.F., Ghanbari, M.: Extreme-value prediction for non-linear stochastic oscillators via numerical solutions of the stationary FPK equation. J. Sound Vib. 206, 697–724 (1997)

    Article  Google Scholar 

  14. Shinozuka, M.: Monte Carlo solution of structural dynamics. Comput. Struct. 2, 855–874 (1972)

    Article  Google Scholar 

  15. Caughey, T.K.: Response of a nonlinear string to random loading. ASME J. Appl. Mech. 26, 341–344 (1959)

    MATH  MathSciNet  Google Scholar 

  16. Iyengar, R.N., Dash, P.K.: Study of the random vibration of nonlinear systems by the Gaussian closure technique. ASME J. Appl. Mech. 45, 393–399 (1978)

    MATH  Google Scholar 

  17. Er, G.K.: An improved closure method for analysis of nonlinear stochastic systems. Nonlinear Dyn. 17, 285–297 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Er, G.K., Zhu, H.T., Iu, V.P., Kou, K.P.: PDF solution of nonlinear oscillators subject to multiplicative Poisson pulse excitation on displacement. Nonlinear Dyn. 55, 337–348 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Er, G.K., Zhu, H.T., Iu, V.P. et al. Nonzero mean PDF solution of nonlinear oscillators under external Gaussian white noise. Nonlinear Dyn 62, 743–750 (2010). https://doi.org/10.1007/s11071-010-9758-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9758-7

Keywords

Navigation