Skip to main content
Log in

Some flower-like gaits in the snakeboard’s locomotion

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The snakeboard is a modified version of the skateboard in which the front and back pairs of wheels can pivot freely about a vertical axis (see Fig. 1). The rider can generate motion by coupling a turning of his/her feet which lie on wheel platforms with an appropriate twisting of his/her body without kicking off the ground.

The snakeboard was first presented in details by [Lewis et al., in Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, May 1994, pp. 2391–2400]. In literature, it also has been studied as a prototype of the symmetrical nonholonomic locomotion systems. Geometrical modeling, finding the gaits, presenting the controllability ideas and designing desired trajectories are the subjects that can be found in the literature of the snakeboard.

In this paper, we present some symmetric sensitive flower-like gaits for the snakeboard by suitable tuning of the input parameters. The highly symmetric patterns generated by these gaits, besides their inherent beauty, sensitivity to parameter variations and coherency; exemplify the rich information content of the underlying nonlinear system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

∇:

affine connection

φψ, φφ :

snakeboard’s phases of the shape variables

λi :

Lagrange multipliers

ψ, ϕ:

snakeboard’s body coordinates

ωj i :

constraint one-forms

ω, ωψ, ωϕ :

snakeboard’s frequencies of the shape variables

a, aψ, aϕ :

snakeboard’s amplitudes of the shape variables

A :

mecanical connection

D :

constraint distribution

F i :

generalized forces

g :

an element of the Lie group, SE(3)

g :

the corresponding Lie algebra of g

G :

the fiber

HQ :

horizontal space of Q

I −1 :

locked inertia tensor

J, J r, J w :

snakeboard’s body, rotor and wheel inertias

k o, k a :

the ratio of frequencies and amplitudes of ϕ to ψ respectively

L :

Lagrangian

M :

base manifold

M ij :

metric tensor in base space

p a :

generalized momenta

q i :

generalized coordinates

Q :

configuration manifold

r :

shape coordinates of the locomotive system

S :

constrained fiber distribution

TQ :

tangent space of Q

VQ :

Vertical space of Q

x, y, θ:

snakeboard’s center of mass position

References

  1. Abraham, R., Marsden, J. E.: Manifold, Tensor Analysis and Applications. Springer-Verlag, New York (1988)

  2. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136(1), 21–99 (1996)

    Article  MathSciNet  Google Scholar 

  3. Bullo, F., Leonard, N.E., Lewis, A.D.: Controllability and motion algorithms for underactuated lagrangian systems on Lie groups. IEEE TAC 45(8), 1437–1454 (2000)

    MathSciNet  Google Scholar 

  4. Bullo, F., Lewis, A.D.: Kinematic controllability and motion planning for the snakeboard. IEEE Trans. 19(3), 494–498 (2002)

    Google Scholar 

  5. Bullo, F., Lewis, A.D., Lynch, K.M.: Controllable kinematic reductions for mechanical systems: concepts, computational tools, and examples. In: International Symposium on Mathematical Theory of Networks and Systems (MTNS 2002). Notre Dame, IN, (2002)

  6. Bullo, F. Lynch, K.M.: Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems. IEEE Trans. Robotics Auto. 17(4), 402–412 (2001)

    Article  Google Scholar 

  7. Bullo, F., Zefran, M.: On mechanical control systems with nonholonomic constraints and symmetries. Sys. Contr. L. 45(2), 133–143 (2002)

    Article  MathSciNet  Google Scholar 

  8. Iannitti, S., Lynch, K.M.: Minimum control switch motions for the snakeboard: a case study in kinematically controllable underactuated systems. IEEE Trans. Robotics 20(6), 994–1006 (2004)

    Article  Google Scholar 

  9. Iannitti, S., Lynch, K.M.: Exact minimum control switch motion planning for the snakeboard. In: IEEE/RSJ International Conference on Intelligent Robots and Systems 2003. Las Vegas, NV (2003)

  10. Kelly, S.D., Murray, R.M.: Geometric phases and locomotion. J. Robotic Sys. 12(6), 417–431 (1995)

    Google Scholar 

  11. Lewis, A.D.: Simple mechanical control systems with constraints. IEEE TAC 45(8), 1420–1436 (2000)

    Google Scholar 

  12. Lewis, A.D., Ostrowski, J.P., Burdick, J.W., Murray, R.: Nonholonomic mechanics and locomotion: the snakeboard example. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation. San Diego CA, USA, May 1994, pp. 2391–2400 (1994)

  13. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer-Verlag. Second Edition NY (1999)

  14. Murray, R.M., Sastry, S.S.: Nonholonomic motion planning: steering using sinusoids. IEEE Trans. Auto. Contr. 38(5), 700–716 (1993)

    Article  MathSciNet  Google Scholar 

  15. Ostrowski, J.P.: The mechanics and control of undulatory robotic locomotion. PhD thesis, California Institute of Technology, Pasadena, CA (1995)

  16. Ostrowski, J.P.: Steering for a class of dynamic nonholonomic systems. IEEE Trans. Auto. Contr. 45(8), 1492–1497 (2000)

    Article  MathSciNet  Google Scholar 

  17. Ostrowski, J.P., Burdick, J.W.: The geometric mechanics of undulatory robotic locomotion. Int. J. Robotics Res. 17(7), 683–701 (1998)

    Google Scholar 

  18. Ostrowski, J., Burdick, J.: Controllability tests for mechanical systems with constraints and symmetries. J. Appl. Math. Comp. Sci. 7(2), 101–127 (1997)

    MathSciNet  Google Scholar 

  19. Ostrowski, J., Desai, J.P., Kumar, V.: Optimal gait selection for nonholonomic locomotion systems. Int. J. Robotics Res. 19(3), 225–237 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Asnafi or M. Mahzoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asnafi, A.R., Mahzoon, M. Some flower-like gaits in the snakeboard’s locomotion. Nonlinear Dyn 48, 77–89 (2007). https://doi.org/10.1007/s11071-006-9053-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9053-9

Keywords

Navigation