Skip to main content
Log in

Stretched Gaussian Asymptotic Behavior for Fractional Giona–Roman Equation on Biased Heterogeneous Fractal Structure in External Force Fields

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We introduce a biased heterogeneous fractional Giona-Roman equation (BHFGRE) on biased heterogeneous fractal structure media describing systems involving external force fields. The BHFGRE is shown to obey generalized Einstein relation, and its stationary solution is the generalized Boltzmann distribution. It is proved that the asymptotic shape of its solution is a stretched Gaussian and that its solution can be expressed in the form of a function of a dimensionless similarity variable for the case of constant potentials and generic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Havlin, S. and Avraham, D. B. ‘Diffusion in disordered media’Advances in Physics36, 1987, 695.

    Google Scholar 

  2. Isichenko, M. B. ‘Percolation, statistical topography and transport in random media’ Reviews of Modern Physics64,1992, 961.

    Google Scholar 

  3. Bouchaud, J. P. and Georges, A. ‘Anomalous diffusion in disordered media – statistical mechanisms, models and physical applications’ Physics Reports195, 1990, 127.

    Google Scholar 

  4. Blumen, A., Klafter, J., and Zumofen, G. ‘Models for reaction dynamics in glasses’, in Optical Spectres Copy of Glasses, I. Zschokke (ed.), Reidel, Dordrecht, 1986.

  5. Losa, G. A. and Weibl, E. R. Fractals in Biology and Medicine, Birkhäuser, Basel, 1993.

  6. Metzler, R., Barkai, E., and Klafter, J. ‘Anomalous transport in disordered systems’ Physica A266, 1999, 343–350.

    Google Scholar 

  7. Metzler, R., Klafter, J., and Sokolov, L. ‘Anomalous transport in external fields: continuous time random walks and fractional diffusion equations extended’ Physical Review E58(2), 1998, 1621–1633.

    Google Scholar 

  8. Metzler, R., Glöckle, W. G., and Nonnenmacher, T. F. “‘Fractional tuning” of the Riccati equation’ Fractals5, 1997, 597.

    Google Scholar 

  9. Metzler, R., Barkai, E., and Klafter, J. ‘Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker–Planck equation approach’ Physical Review Letters82, 1999, 3563–3567.

    Google Scholar 

  10. El-Wakil, S. A., Elhanbaly, A., and Zahran, M. A. ‘Fractional space-time Fokker–Planck equation’ Chaos, Solitons and Fractals12, 2001, 1035.

    Google Scholar 

  11. Jumarie, G. ‘New results on Fokker–Planck equations of fractional order’ Chaos. Solitons and Fractals12, 2001, 1873-1886.

    Google Scholar 

  12. El-Wakil, S. A. and Zahran, M. A. ‘Fractional representation of Fokker–Planck equation’ Chaos, Solitons and Fractals12, 2001, 1929–1935.

    Google Scholar 

  13. Jesperson, S., Metzler, R., and Fogedby, H. C. ‘Levyflights in external force fields: Langevin and fractional Fokker–Planck equations and their solutions’ Physical Review E59(3), 1999, 2736.

    Google Scholar 

  14. Risken, H. The Fokker–Planck Equation, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  15. Bunde, A. and Havlin, S. (eds.), Fractals and Disordered Systems, 2nd ed., Springer, Heidelberg, 1996.

    Google Scholar 

  16. Bottger, H. and Bryskin, V. V. Physica Status Solidi B113, 1982, 9.

    Google Scholar 

  17. Havlin, S., Bunde, A., Stanley, H. E., and Movshovitz, D. ‘Diffusionon percolation clusters with a bias in chemical space: non-universal behavior’ Journal of Physics A19, 1986, L693–L698.

    Google Scholar 

  18. Barma, M. and Dhar, D. ‘Directed diffusion in a percolation network’ Journal of Physics C16, 1983, 1451.

    Google Scholar 

  19. Pandey, R. B. ‘Classical diffusion, drift, and trapping in random percolating systems’ Physical Review B30, 1984, 489.

    Google Scholar 

  20. Dräger, J. and Bunde, A. ‘Random walks on percolation with a topological bias: decay of the probability density’ Physica A266, 1999.

  21. Schneider, W. R. and Wyss, W. ‘Fractional diffusion and wave equations’ Journal of Mathematical Physics30, 1989, 134.

    Google Scholar 

  22. A. Le Mehaute Journal of Statistical Physics36(5/6), 1984, 665.

  23. Giona, M. and Roman, H. E. ‘Fractional diffusion equation for transport phenomena in random-media’ Physica A185, 1992, 87.

    Google Scholar 

  24. Ren, F.-Y., Yu, Z.-G., and Su, F. ‘Fractional integral associated tothe self-similar set or the generalized self-similar set and its physical interpretation’ Physics Letters A219, 1996, 59–68.

    Google Scholar 

  25. Qiu, W.-Y. and Lü, J. ‘Fractional integrals and fractal structure of memory sets’ Physics Letters A272, 2000, 353–358.

    Google Scholar 

  26. Ren, F.-Y., Wang, X.-T., and Liang, J.-R., ‘Determination of diffusion kernel on fractals’, Journal of Physics A34, 2001, 9815–9825.

    Google Scholar 

  27. Ren, F.-Y., Wang, X.-T., and Liang, J.-R. ‘Determination of diffusion kernel on fractals’ Journal of Physics A34, 2001, 9815–9825.

    Google Scholar 

  28. Rammel, R. and Toulouse, G. Journal de Physique (Paris) Lettres44, 1983, 13.

    Google Scholar 

  29. Roman, H. E. and Giona, M. ‘Fractional diffusion equation on fractals: 3-dimensional case and scattering function’ Journal of Physics A25, 1992, 2107.

    Google Scholar 

  30. Samk, S. G., Kilba, A. A., and Marichev, O. L. Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, New York, 1993.

    Google Scholar 

  31. Barkai, E. ‘Fractional Fokker–Planck equation, solution, andapplication’ Physical Review E63, 2001, 046118.

    Google Scholar 

  32. Ahlfors, L. V. Complex Analysis, McGraw-Hill, New York, 1979.

    Google Scholar 

  33. Gradshteyn, I. S. and Ryzhik, I. M. Table ofIntegrals Series and Products, London, Academic Press, 1980.

    Google Scholar 

  34. Abramovitz, M. and Stegun, I. A. Handbook of Mathematical Functions, Dover, New York, 1970.

    Google Scholar 

  35. Xu, Y., Ren, F.-Y., Liang, J.-R., and Qiu, W.-Y. ‘Stretched Gaussianasymptotic behavior for fractional Fokker–Planck equation on fractal structure in external force fields’ Chaos, Solitons and Fractals20, 2004, 581–586.

    Google Scholar 

  36. Ren, F.-Y., Liang, J.-R., Qiu, W.-Y., and Xu, Y. ‘Fractional Fokker–Planck equation on heterogeneous fractal structures in external force fields and its solutions’ Journal of Physics A 36, 2003, 7533–7543.

    Google Scholar 

  37. Qiu, W.-Y., Ren, F.-Y., Liang, J.-R., and Xu, Y. ‘University of stretched Gaussian asymptotic behavior on biased heterogeneous fractal structure in external force fields’, to appear in Chaos, Solitons and Fractals.

  38. Ren, F.-Y., Liang, J.-R., Qiu, W.-Y., and Xu, Y. ‘Fractional Giona–Roman equation on heterogeneous fractal structures in external force fields and its solutions’, in Proceedings of DETC 03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, Illinois, September 2–6, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yuan Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, WY., Ren, FY., Xu, Y. et al. Stretched Gaussian Asymptotic Behavior for Fractional Giona–Roman Equation on Biased Heterogeneous Fractal Structure in External Force Fields. Nonlinear Dyn 38, 285–294 (2004). https://doi.org/10.1007/s11071-004-3761-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-004-3761-9

Key words:

Navigation