Skip to main content

Advertisement

Log in

Assessment of potential risks induced by increasing extreme precipitation under climate change

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A warmer climate has caused more extreme climate events like the heatwave or extreme precipitation, which has led to a large number of lives and economic losses. In this study, we adopt historical daily precipitation from rainfall estimates on a gridded network (REGEN) and future daily projections from 10 general circulation models (GCMs) to analyze the potential risks of extreme precipitation due to changes in the magnitude and frequency. We calculate the 10-year and 100-year return levels by fitting the partial duration series (PDS) data with the generalized Pareto (GP) distribution. The potential risks are quantified in two terms: by the ratio of the magnitude to the threshold and by the exceedance frequency comparing to the theoretical value. The results show that in the future, about 46% of the world may suffer from mid or high risk of change in extreme precipitation. Most regions show higher risk due to the increased frequency of extreme precipitation events under the RCP8.5 scenario. The high risk of humid regions mainly appears under the RCP8.5 scenario and is mainly driven by frequency change, while that of arid regions appears under both the scenarios and is driven by both the frequency and magnitude change. The tropical rainforest climate areas of South America (SA (N)), the tropical savanna or tropical wet monsoon and tropical dry areas of South Asia (SA), and the subarctic climate areas of Northern Asia (NOA) may suffer more risks from the view of both magnitude and frequency changes of extreme precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbas K, Khan SA, Khan DM, Ali A, Khalil UJEJSR (2012) Modeling the distribution of annual maximum rainfall in Pakistan. Eur J Sci Res 79(3):418–429

    Google Scholar 

  • Alfieri L, Bisselink B, Dottori F, Naumann G, De Roo A, Salamon P, Wyser K, Feyen L (2017) Global projections of river flood risk in a warmer world. Earth’s Futur 5(2):171–182

    Article  Google Scholar 

  • Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, E. F. J. S. d. Wood, (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci data 5(1):180214

    Article  Google Scholar 

  • Chen H, Sun J, X. J. I. j. o. c. Chen, (2014) Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models. Int j climatol 34(8):2730–2748

    Article  Google Scholar 

  • Cheng L, AghaKouchak A, Gilleland E, R. W. J. C. c. Katz, (2014) Non-stationary extreme value analysis in a changing climate. Clim Chang 127(2):353–369

    Article  Google Scholar 

  • Christensen JH, Christensen OBJN (2003) Severe summertime flooding in Europe. Nature 421(6925):805–806

    Article  Google Scholar 

  • Chylek P, Li J, Dubey M, Wang M, Lesins GJAC, Discussions P (2011) Observed and model simulated 20th century Arctic temperature variability: canadian earth system model CanESM2. Atmos Chem Phys Discuss 11(8):22893–22907

    Google Scholar 

  • Coles S (2001) "An introduction to statistical modelling of extreme events. Springer, London

    Google Scholar 

  • Contractor S, Donat M, Alexandre LV, Ziese M, Meyer-Christoffer A, Schneider U, Rustemeier E, Becker A, Durre I, Vose RSJH, Sciences ES (2020) Rainfall Estimates on a Gridded Network (REGEN)–a global land-based gridded dataset of daily precipitation from 1950 to 2016. Hydrol Earth Sys Sci 24(2):919–943

    Article  Google Scholar 

  • Das B, Ghosh SJB (2013) Weak limits for exploratory plots in the analysis of extremes. Bernoulli 19(1):308–343

    Article  Google Scholar 

  • Data, C. J. W. M. O. (2009). "Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. World Meteorol Organ

  • Donat MG, Lowry AL, Alexander LV, O’Gorman PA, Maher NJNCC (2016) More extreme precipitation in the world’s dry and wet regions. Nat Clim Chang 6(5):508–513

    Article  Google Scholar 

  • Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, R. J. C. d. Benshila, (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim dyn 40(9):2123–2165

    Article  Google Scholar 

  • Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, M. J. J. J. o. c. Harrison, (2012) GFDL’s ESM2 global coupled climate–carbon earth system models Part I Physical formulation and baseline simulation characteristics. J clim 25(19):6646–6665

    Article  Google Scholar 

  • Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN, Douglas A, Førland E, Zhai P-M (1999) Changes in the probability of heavy precipitation: important indicators of climatic change. Springer, Weather and Climate Extremes, pp 243–283

    Google Scholar 

  • Guo X, Huang J, Yong L, Zhao Z, Ying X (2016) Projection of precipitation extremes for eight global warming targets by 17 CMIP5 models. Nat Hazard 84(3):2299–2319

    Article  Google Scholar 

  • Hallegatte S, Green C, Nicholls RJ, J. J. N. c. c. Corfee-Morlot, (2013) Future flood losses in major coastal cities. Nat Clim Chang 3(9):802–806

    Article  Google Scholar 

  • Hanson LS, Vogel R (2008) The probability distribution of daily rainfall in the United States. Ahupua’A, World Environmental and Water Resources Congress

    Book  Google Scholar 

  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae SJNCC (2013) Global flood risk under climate change. Nat Clim Chang 3(9):816–821

    Article  Google Scholar 

  • Huang J, Ran J, Ji MJAMS (2014) Preliminary analysis of the flood disaster over the arid and semi-arid regions in China. Acta Meteorol Sinica 72(6):1096–1107

    Google Scholar 

  • Jones C, Hughes J, Bellouin N, Hardiman S, Jones G, Knight J, Liddicoat S, F. O’connor, R. J. Andres, and C. J. G. M. D. Bell, (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570

    Article  Google Scholar 

  • Jonkman SNJN, h. (2005) Global perspectives on loss of human life caused by floods. Nat Hazard 34(2):151–175

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Chang 119(2):345–357

    Article  Google Scholar 

  • Kharin V, Flato G, Zhang X, Gillett N, Zwiers F, K. J. E. s. F. Anderson, (2018) Risks from climate extremes change differently from 1.5 C to 2.0 C depending on rarity. Earth’s Futur 6(5):704–715

    Article  Google Scholar 

  • Kron, and Wolfgang, (2009) Flood risk = hazard * values * vulnerability. Water int 30(1):58–68

    Article  Google Scholar 

  • Kundzewicz ZW, Kanae S, Seneviratne SI, Handmer J, Nicholls N, Peduzzi P, Mechler R, Bouwer LM, Arnell N, Mach KJHSJ (2014) Flood risk and climate change: global and regional perspectives. Hydrol Sci J 59(1):1–28

    Article  Google Scholar 

  • Langousis A, Mamalakis A, Puliga M, Deidda RJWRR (2016) Threshold detection for the generalized Pareto distribution: Review of representative methods and application to the NOAA NCDC daily rainfall database. Water Resour Res 52(4):2659–2681

    Article  Google Scholar 

  • Li L, Lin P, Yu Y, Wang B, Zhou T, Liu L, Liu J, Bao Q, Xu S, W. J. A. i. A. S. Huang, (2013) The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Adv Atmos Sci 30(3):543–560

    Article  Google Scholar 

  • Madsen H, Pearson CP, Rosbjerg DJWRR (1997a) Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 2 regional modeling. Water Resour Res 33(4):759–769

    Article  Google Scholar 

  • Madsen H, Rasmussen PF, D. J. W. r. r. Rosbjerg, (1997b) Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1 At-site modeling. Water Resour Res 33(4):747–757

    Article  Google Scholar 

  • Madsen H, Lawrence D, Lang M, Martinkova M, T. J. J. o. H. Kjeldsen, (2014) Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J Hydrol 519:3634–3650

    Article  Google Scholar 

  • Papalexiou SM, Montanari A (2019) Global and Regional Increase of Precipitation Extremes Under Global Warming. Water Resour Res 55(6):4901–4914

    Article  Google Scholar 

  • Peng D, Zhou T, Zou L, Zhang L, X. J. C. J. o. A. S. Chen, (2016) The FGOALS–G2 Simulation of Global Monsoon Extreme Precipitation and Future Projection. Chin J Atmos Sci 40(5):1059–1072

    Google Scholar 

  • Rodrigues DT, Gonçalves WA, Spyrides MH, C. M. Santos e Silva, and D. O. J. I. J. o. C. de Souza, (2020) Spatial distribution of the level of return of extreme precipitation events in Northeast Brazil. Int J Climatol 40(12):5098–5113

    Article  Google Scholar 

  • Salisu D, a., S. Supiah, and A. J. A. J. o. E. S. Azmi, (2010) Modeling the distribution of rainfall intensity using hourly data. Am J Environ Sci 6(3):238–243

    Article  Google Scholar 

  • Serinaldi F, C. G. J. W. r. r. Kilsby, (2014) Rainfall extremes: toward reconciliation after the battle of distributions. Water resour res 50(1):336–352

    Article  Google Scholar 

  • Sikorska AE, J. J. J. o. H. Seibert, (2018) Value of different precipitation data for flood prediction in an alpine catchment: A Bayesian approach. J Hydrol 556:961–971

    Article  Google Scholar 

  • Sun X, Lall UJGRL (2015) Spatially coherent trends of annual maximum daily precipitation in the United States. Geophys Res Lett 42(22):9781–9789

    Article  Google Scholar 

  • Sun Q, Zhang X, Zwiers F, Westra S, L. V. J. J. o. C. Alexander, (2021) A global, continental, and regional analysis of changes in extreme precipitation. J Clim 34(1):243–258

    Article  Google Scholar 

  • Tanaka, S., K. Takara, A. Snorrason, H. Finnsdottir, and E. J. I. P. Moss (2002). A study on threshold selection in POT analysis of extreme floods. IAHS PUBLICATION 299–306

  • Tatebe, H., M. Ishii, T. Mochizuki, Y. Chikamoto, T. Sakamoto, Y. Komuro, M. Mori, S. Yasunaka, M. Watanabe, and K. J. J. M. S. J. Ogochi (2012). Initialization of the climate model MIROC for decadal prediction with hydographic data assimilation. J Meteorol Soc Jpn

  • Voldoire A, Sanchez-Gomez E, D. S. y Mélia, B. Decharme, C. Cassou, S. Sénési, S. Valcke, I. Beau, A. Alias, and M. J. C. d. Chevallier, (2013) The CNRM-CM5 1 global climate model: description and basic evaluation. Clim dynam 40(9):2091–2121

    Article  Google Scholar 

  • Voss R, May W, Roeckner E (2002) Enhanced resolution modelling study on anthropogenic climate change: Changes in extremes of the hydrological cycle. Int J Climatol: J R Meteorol Soc 22(7):755–777

    Article  Google Scholar 

  • Wahlstrom M, Guha-Sapir DJG, Switzerland: UNISDR, (2015) The human cost of weather-related disasters 1995–2015. UNISDR, Geneva, Switzerland

    Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata TJGMD (2011) MIROC-ESM 2010: Model description and basic results of CMIP5–20c3m experiments. Geosci Model Dev 4(4):845–872

    Article  Google Scholar 

  • Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts N (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52(3):522–555

    Article  Google Scholar 

  • Winsemius HC, Aerts JC, Van Beek LP, Bierkens MF, Bouwman A, Jongman B, Kwadijk JC, Ligtvoet W, Lucas PL, Van Vuuren DP, Ward PJ (2016a) Global drivers of future river flood risk. Nat Clim Chang 6(4):381–385

    Article  Google Scholar 

  • Winsemius HC, Aerts JCJH, Van Beek LPH, Bierkens MFP, Bouwman A, Jongman B, Kwadijk JCJ, Ligtvoet W, Lucas PL, Van Vuuren DP (2016b) Global drivers of future river flood risk. Nat Clim Chang 6(4):381–385

    Article  Google Scholar 

  • Wu C, G. J. I. J. o. C. Huang, (2015) Changes in heavy precipitation and floods in the upstream of the Beijiang River basin, South China. Int J Climatol 35(10):2978–2992

    Article  Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, M. J. J. o. t. M. S. o. J. S. I. Deushi, (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance—. J Meteorol Soc Japan Ser II 90:23–64

    Article  Google Scholar 

  • Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18(7):1096–1108

    Article  Google Scholar 

  • Zhang W, Zhou TJSB (2020) Increasing impacts from extreme precipitation on population over China with global warming. Sci Bull 65(3):243–252

    Article  Google Scholar 

  • Zhao Y, Xu X, Huang W, Wang Y, Xu Y, Chen H, Kang ZJT, Climatology A (2019) Trends in observed mean and extreme precipitation within the Yellow River Basin, China. Theor Appl Climatol 136(3–4):1387–1396

    Article  Google Scholar 

  • Zin WZW, Jemain AA, Ibrahim KJT, a. climatology, (2009) The best fitting distribution of annual maximum rainfall in Peninsular Malaysia based on methods of L-moment and LQ-moment. Theor appl climatol 96(3–4):337–344

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grant Number: 2017YFA0605303), the National Natural Science Foundation of China (41877454, 51809251), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23100401), the Youth Innovation Promotion Association of CAS (No.2019053), and the Young Talents in IGSNRR, CAS (2017RC201).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huijuan Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Cui, H. & Ge, Q. Assessment of potential risks induced by increasing extreme precipitation under climate change. Nat Hazards 108, 2059–2079 (2021). https://doi.org/10.1007/s11069-021-04768-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04768-9

Keywords

Navigation