Skip to main content

Advertisement

Log in

Multicriterial method of AHP analysis for the identification of coastal vulnerability regarding the rise of sea level: case study in Ilha Grande Bay, Rio de Janeiro, Brazil

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Current climate changes have several consequences, such as rising sea levels. Today, the identification of coastal vulnerabilities worldwide is necessary to prevent impacts and drive action. The aim of the work was to estimate the vulnerable areas from a total rate of increase in sea level of 2.8 m and to identify the impacts of greater magnitude through the use of hierarchical analysis. The analytic hierarchy process method was used to list the most serious impacts. In addition, the simulation of the most vulnerable sites was carried out in a GIS environment using geoprocessing and a digital terrain model for the area of study. The Ilha Grande Bay region (southeastern Brazil) was chosen as a test area due to its economic, tourist and environmental importance. The main impacts are floods, coastal erosion and loss of coastal ecosystems. The most vulnerable areas are characterized as flat with low slopes, usually coastal plains occupied by environmental protection areas, urban centers and historical centers. The methodology proved to be effective in assessing and forecasting vulnerable areas and can be applied to several types of coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

QGIS 3.10.

References

  • Al-Buloshi A, Al-Hatrushi S, Charabi Y (2014) GIS-based framework for the simulation of the impacts of sea level rise and coastal flooding on Oman. J Earth Sci Clim Change 5(10):5–10. https://doi.org/10.4172/2157-7617.1000238

    Article  Google Scholar 

  • Balica FS, Wright GN, van der Meulen F (2012) A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat Hazards 64:73–105. https://doi.org/10.1007/s11069-012-0234-1

    Article  Google Scholar 

  • Balica SF, Popescu I, Beevers L, Wright NG (2013) Parametric and physically based modelling techniques for flood risk and vulnerability assessment: A comparison. Environ Model Softw 41:84–92. https://doi.org/10.1016/j.envsoft.2012.11.002

    Article  Google Scholar 

  • Barros FML (2005) Risco e vulnerabilidade à erosão costeira no município de Maricá. Universidade Federal do Rio de Janeiro, Rio de Janeiro. Dissertação de mestrado

    Google Scholar 

  • Bird E (2008) Coastal geomorphology: an introduction. 2ª Edition. ISBN 978-0-470-51729-1

  • Castro JWA, Fernandes D, Dias FF (2011) Monitoramento do Processo de Erosão Costeira na Praia das Tartarugas, Rio das Ostras - Estado do Rio de Janeiro/Brasil: Aplicação de Metodologia Quantitativa. Revista da Gestão Costeira Integrada 11(3):355–368. https://doi.org/10.5894/rgci276

    Article  Google Scholar 

  • IBGE. Censo 2010. Availabre in (<http://censo2010.ibge.gov.br/resultados>)

  • CEPAL (2012) Estudio de los Efectos del Cambio Climático en la costa de América Latina y el Caribe. Disponível em: (<http://www.c3a.ihcantabria.com/>;<http://www.cepal.org/es/efectos-cambio-climatico-la-costa-america-latina-caribe>), 2012

  • Chang SW, Clement TP, Simpson MJ, Lee K (2011) Does sea-level rise have an impact on saltwater intrusion? Adv Water Resour 34(10):1283–1291. https://doi.org/10.1016/j.advwatres.2011.06.006

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea Level Change. In: Climate Change 2013: The physical science basis. contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • CIESIN-Center for International Earth Science Information Network (2016) Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/https://doi.org/10.7927/H4NP22DQ. Accessed 11.12.2017, 2016

  • CPRM (2000) Geological Survey of Brazil. Geological Map of Rio de Janeiro State. Rio de Janeiro. Scale 1:500.000

  • Darwin FR, Tol JSR (2001) Estimates of the economic effects od sea level rise. Environ Resour Econ 19:113–129. https://doi.org/10.1023/A:1011136417375

    Article  Google Scholar 

  • Day WJ, Pont D, Hensel FP, Ibañez C (1995) Impacts of sea-level rise on deltas in the gulf of mexico and the mediterranean: the importance of pulsing events to sustainability. Estuaries Coasts 18:636–647. https://doi.org/10.2307/1352382

    Article  Google Scholar 

  • Eirado LG, Heilbron M, Almeida JCH (2006) Os Terrenos Tectônicos da Faixa Ribeira na Serra da Bocaina e na Baía da Ilha Grande, Sudeste do Brasil. Revista Brasileira de Geociências 36(2):426–436. https://doi.org/10.25249/0375-7536.2006363426436

    Article  Google Scholar 

  • GodoiI VA, Calado L, Watanabe WB, Yaginuma LE, Bastos M (2011) Evento extremo de ondas na Baía da Ilha Grande: um estudo de caso. Boletim do Observatório Ambiental Alberto Ribeiro Lamego, Campos dos Goytacazes/RJ 5(2):27–44. https://doi.org/10.5935/2177-4560.20110014

    Article  Google Scholar 

  • Hanson S, Nicholls R, Ranger N, Hallegatte S, Corfee-Morlot J, Herweijer C, Chateau J (2011) A global ranking of port cities with high exposure to climate extremes. Clim Change 104:89–112. https://doi.org/10.1007/s10584-010-9977-4

    Article  Google Scholar 

  • Heilbron M, Pedrosa-Soares AC, Neto MC, Silva LC, Trouw J, Janasi V (2004) Brasiliano Orogens in Southeast and South Brazil. J Virtual Explor. https://doi.org/10.3809/jvirtex.2004.00109

    Article  Google Scholar 

  • ICAM (2009) Hazard awareness and risk mitigation in integrated coastal management. Intergovernmental Oceanographic Commission. IOC Manual and Guides No. 50, ICAM Dossier No. 5, Paris, UNESCO

  • IcmBio (2006) Plano de Manejo da Estação Ecológica de Tamoios. Angra dos Reis, p. 312

  • INEA—Instituto Estadual do Ambiente. Rio de Janeiro. Diagnóstico do Setor Costeiro da Baía de Ilha Grande—Versão Prenimilar, book I, 2015

  • Iwamura T, Possingham HP, Chades I, Minton C, Murray NJ, Rogers DI, Treml EA, Fuller RA (2013) Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations. Proc of the Royal Soc B 280(20130325):1–8. https://doi.org/10.1098/rspb.2013.0325

    Article  Google Scholar 

  • Jung-Mendaçolli SL, Bernacci LC (2001) Myrsinaceae da APA de Cairuçu, Paraty (Rio de Janeiro, Brasil). Rodriguésia 52(81):49–64. https://doi.org/10.1590/2175-78602001528103

    Article  Google Scholar 

  • Krauss KW, McKee KL, Lovelock CE et al (2013) How mangrove forests adjust to rising sea level. New Phytol 202:19–34. https://doi.org/10.1111/nph.12605

    Article  Google Scholar 

  • Kuhfussa L, Rey-Valettea H, Sourisseaua E, Heurtefeuxb H, Rufrayc X (2016) Evaluating the impacts of sea level rise on coastal wetlands in Languedoc-Roussillon, France. Environ Sci Policy 56:26–34. https://doi.org/10.1016/j.envsci.2016.02.002

    Article  Google Scholar 

  • Le Cozannet G, Garcin M, Bulteau T et al (2013) An AHP-derived method for mapping the physical vulnerability of coastal areas at regional scales. Nat Hazards Earth Syst Sci 13:1209–1227. https://doi.org/10.5194/nhess-13-1209-2013

    Article  Google Scholar 

  • Le Cozannet G, Garcin M, Yates M, Idier D, Meyssignac B (2014) Approaches to evaluate the recent impacts of sea-level rise on shoreline changes. Earth Sci Rev 138:47–60. https://doi.org/10.1016/j.earscirev.2014.08.005

    Article  Google Scholar 

  • Leatherman SP, Zhang K, Douglas BC (2000) Sea level rise shown to drive coastal erosion. EOS Earth Space Sci News 81(6):55–57. https://doi.org/10.1029/00EO00034

    Article  Google Scholar 

  • Lipscy PY, Kushida KE, Incerti T (2013) The Fukushima Disaster and Japan’s Nuclear Plant Vulnerability in Comparative Perspective. Environ Sci Tecnol 47:6082–6088. https://doi.org/10.1021/es4004813

    Article  Google Scholar 

  • Mani Murali R, Ankita M, Vethamony P (2018) A new insight to vulnerability of Central Odisha coast India using analytical hierarchical process (AHP) based approach. J Coastal Conserv. https://doi.org/10.1007/s11852-018-0610-4

    Article  Google Scholar 

  • Messer S, Moran L, Reub G, Campbell J (2013) Climate change and sea level rise impacts at ports and a consistent methodology to evaluate vulnerability and risk. WIT Trans Ecol Environ 169:141–153. https://doi.org/10.2495/13CP0131

    Article  Google Scholar 

  • Muehe D (2011) Erosão Costeira—Tendência ou Eventos Extremos? O Litoral entre Rio de Janeiro e Cabo Frio. Brasil Revista da Gestão Costeira Integrada 11(3):315–325. https://doi.org/10.5894/rgci282

    Article  Google Scholar 

  • Muehe D, Lima CF, Barros FML (2006) Rio de Janeiro. In: Erosão e progradação do litoral brasileiro. Brasília

  • Nasiri H, Shahmohammadi-Kalalagh S (2013) Flood vulnerability index as a knowledge base for flood risk assessment in urban area. J Novel Appl Sci 2(8):269–271

    Google Scholar 

  • Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10(3):e0118571. https://doi.org/10.1371/journal.pone.0118571

    Article  Google Scholar 

  • Nicholls JR, Cazenave A (2010) Sea level rise and its impacts on coastal zones. Science 328:1517–1520. https://doi.org/10.1126/science.1185782

    Article  Google Scholar 

  • Nicholls JR, Hoozemans JMF, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Global Environ Change 9(1):S69–S87. https://doi.org/10.1016/S0959-3780(99)00019-9

    Article  Google Scholar 

  • Nicholls RJ, Wong PP, Burkett VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007) Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds.) Cambridge University Press, Cambridge, UK, 315–356

  • Nicholls JR, Hanson ES, Lowe AJ, Warrick AR, Lu X, Long JÁ (2014) Sea-level scenarios for evaluating coastal impacts. Clim Change 5:129–150. https://doi.org/10.1002/wcc.253

    Article  Google Scholar 

  • Oppenheimer M, Glavovic BC, Hinkel J, van de Wal R, Magnan AK, Abd-Elgawad A, Cai R, Cifuentes-Jara M, DeConto RM, Ghosh T, Hay J, Isla F, Marzeion B, Meyssignac B, Sebesvari Z (2019) Sea level rise and implications for low-lying islands, coasts and communities. In: IPCC special report on the ocean and cryosphere in a changing climate pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds.). In press

  • Orêncio PM, Fujii M (2013) A localized disaster-resilience index to assess coastal communities based on ananalytic hierarchy process(AHP). Int J Disaster Risk Reduct 3:62–75. https://doi.org/10.1016/j.ijdrr.2012.11.006

    Article  Google Scholar 

  • Özyurt G, Ergin A, Baykal C (2011) Coastal vulnerability assessment to sea level rise integrated with analytical hierarchy process. Coastal Eng 1(32):6. https://doi.org/10.9753/icce.v32.management.6

    Article  Google Scholar 

  • Passos AS, Dias FF, Santos PRA, Barros SRS, Souza CRG, Bernardino D, Araujo JC, Vargas R, Santos CA (2018) Evaluation of the effects of a possible sea-level rise in Mangaratiba – RJ. J Coastal Conserv. https://doi.org/10.1007/s11852-018-0665-2

    Article  Google Scholar 

  • PBMC (2016) Impacto, vulnerabilidade e adaptação das cidades costeiras brasileiras às mudanças climáticas: Relatório Especial do Painel Brasileiro de Mudanças Climáticas [Marengo, J.A., Scarano, F.R. (Eds.)]. PBMC, COPPE-UFRJ. Rio de Janeiro, Brasil. 184 p. ISBN: 978-85-285-0345-6

  • Pendleton EA, Barras JA, Williams SJ, Twichell DC (2010) Coastal vulnerability assessment of the northern gulf of mexico to sea-level rise and coastal change: U.S. Geological Survey Open-File Report 2010–1146. Available in : (http://pubs.usgs.gov/of/2010/1146/)

  • Pethik J (2001) Coastal management and sea-level rise. CATENA 42:307–322. https://doi.org/10.1016/S0341-8162(00)00143-0

    Article  Google Scholar 

  • Pinheiro AB, Silva ALC, Silvestre CP, Barbosa TM (2017) Praias do litoral de Paraty (RJ). XVII Simpósio de Geografia Física Aplicada. I Congresso Nacional de Geografia Física. Unicamp. Campinas, São Paulo, p. 2864–2875. Doi: https://doi.org/10.20396/sbgfa.v1i2017.

  • Rampino MR (2005) Erosion processes. In: Schwartz ML (ed) Encyclopedia of coastal science. Springer, Berlin, p 432

    Google Scholar 

  • Reguero BG, Méndez FJ, Losada IJ (2013) Variability of multivariate wave climate in Latin America and the Caribbean. Global Planet Change 100:70–84. https://doi.org/10.1016/j.gloplacha.2012.09.005

    Article  Google Scholar 

  • Reguero BG, Losada IJ, Díaz-Simal P, Méndez FJ, Beck MW (2015) Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS ONE 10(7):e0133409. https://doi.org/10.1371/journal.pone.0133409

    Article  Google Scholar 

  • Ribeiro GP, Rocha CH, Junior AGF, Silva CS et al (2004) Análise espaço-temporal no suporte à avaliação do processo de erosão costeira em Atafona, São João da Barra (RJ). Revista Brasileira de Cartografia 56(2):129–138

    Google Scholar 

  • Rozados HBF (2015) O uso da técnica Delphi como alternativa metodológica para área de ciência da informação. Em questão Porto Alegre 21(3):64–86. https://doi.org/10.19132/1808-5245213.64-86

    Article  Google Scholar 

  • Saaty TL (1994) How to Make a Decision: The Analytic Hierarchy Process. Institute Operations Res Manage Sci Interfaces 24(6):19–43. https://doi.org/10.1016/0377-2217(90)90057-I

    Article  Google Scholar 

  • Saaty T (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98. https://doi.org/10.1504/IJSSCI.2008.017590

    Article  Google Scholar 

  • Savi DC (2006) Erosão e acresção costeira na enseada dos Anjos, Arraial do Cabo. RJ Revista Brasileira de Geofísica 25(1):91–99. https://doi.org/10.1590/S0102-261X2007000500009

    Article  Google Scholar 

  • Silva DMR (2007) Aplicação do método AHP para avaliação de projetos industriais. Dissertação de mestrado. Pontifícia Universidade Católica do Rio de Janeiro. Rio de Janeiro. p. 132, 2007

  • Souza CRG (2009) A Erosão nas Praias do Estado São Paulo: Causas, Conseqüências, Indicadores de Monitoramento e Risco. In: Bononi, V.L.R., Santos Junior, N.A. (Org.), Memórias do Conselho Cientifico da Secretaria do Meio Ambiente: A Síntese de Um Ano de Conhecimento Acumulado, 48–69, Instituto de Botânica—Secretaria do Meio Ambiente do Estado de São Paulo, São Paulo, SP, Brasil. (ISBN 978-85-7523-025-1).

  • Souza CRG (2011) Os ecossistemas costeiros frente às mudanças climáticas no Brasil: efeitos da elevação do nível do mar. XIV Congresso Latino-Americano de Ciências do Mar-COLACMAR, Balneário Camboriú (SC). Boletim de Resumos Expandidos.

  • Tahri M, Maanan M, Maanan M, Bouksin H, Hakdaoui M (2017) Using fuzzy analytic hierarchy process multi-criteria and automatic computation to analyse coastal vulnerability. Progress in Phys Geographyc. https://doi.org/10.1177/0309133317695158

    Article  Google Scholar 

  • Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47(2):197–204. https://doi.org/10.1111/j.1745-6584.2008.00535.x

    Article  Google Scholar 

  • Zhang J (2017) Evaluating regional low-carbon tourism strategies using the fuzzy Delphi-analytic network process approach. J Clean Prod 141:409–419. https://doi.org/10.1016/j.jclepro.2016.09.122

    Article  Google Scholar 

  • Zhang K, Douglas BC, Leatherman SP (2004) Global warming and coastal erosion. Clim Change 64:41–58. https://doi.org/10.1023/B:CLIM.0000024690.32682.48

    Article  Google Scholar 

Download references

Funding

CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Julia Caon Araujo and Fabio Ferreira Dias. The first draft of the manuscript was written by Julia Caon Araujo and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. This article is part of the dissertation of the first author, Julia Caon Araujo, whose advisor was Professor Fabio Ferreira Dias.

Corresponding author

Correspondence to Julia Caon Araujo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables

Table 4 Comparison matrix

4,

Table 5 Normalization of the results

5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, J.C., Dias, F.F. Multicriterial method of AHP analysis for the identification of coastal vulnerability regarding the rise of sea level: case study in Ilha Grande Bay, Rio de Janeiro, Brazil. Nat Hazards 107, 53–72 (2021). https://doi.org/10.1007/s11069-021-04573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04573-4

Keywords

Navigation