Skip to main content

Advertisement

Log in

Dynamic hazard assessment of group-occurring debris flows based on a coupled model

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A scientific hazard zoning of debris flows can ensure that human activities are not performed therein, thereby reducing economic loss as much as possible. In this study, by considering the formation background conditions of mountain hazards and dynamic rainfall conditions, the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model (TRIGRS) and Flow path assessment of gravitational hazards at a Regional scale (Flow-R) are organically combined to establish a new coupled model for debris flow dynamic hazard assessment from the viewpoint of landslides providing the material source of debris flows. The coupled model was employed in Qingping township, Sichuan province of China, which was severely damaged by the “5·12” Wenchuan earthquake in 2008. Evaluation results show that the accuracy of the coupled model is 87.98%, which is significantly higher than that of the static Flow-R model (75.51%). This study not only considers the effect of the formation condition of mountain hazards and rainfall-induced shallow landslides on the source of debris flows, but also realises real-time hazard assessment and prediction of group-occurring debris flows. The coupled model used in this study provides a new perspective and is paramount for improving the accuracy and reliability of debris flow hazard assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 41772386, 41877291), the Strategic Leading Science and Technology Project of Chinese Academy of Sciences (Class A) (No. XDA23090203) and the National Key Research and Development Plan of China (No. YS2018YFGH000001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuzhen Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y., Li, X., Zhou, W. et al. Dynamic hazard assessment of group-occurring debris flows based on a coupled model. Nat Hazards 106, 2635–2661 (2021). https://doi.org/10.1007/s11069-021-04558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04558-3

Keywords

Navigation