Skip to main content
Log in

Linking earthquake-triggered paleolandslides to their seismic source and to the possible seismic event that originated them in a portion of the Argentine Precordillera (31°–33°S)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A total of 36 rock slides were selected for analysing a probable seismic source in the active Andean Precordillera (31°–33°S), the most seismic region of Argentina. Seven of these slope instabilities were selected for in-depth analysis in the field as a function of the most frequent class, lithological susceptibility and field accessibility. Reconstructing the topography previous to collapse and using geotechnical parameters extracted from field data in conjunction with geomechanical testing, the rock slides were modelled using pseudostatic limit equilibrium analyses for the obtention of the critical probabilistic acceleration (\({a}_{c}\)) required to generate the instability under unsaturated conditions and considering both the horizontal and vertical seismic components. To perform a probabilistic estimation of \({a}_{c}\), the parameters in relation to the generalized Hoek–Brown failure criterion were selected to operate statistically using 2D SLIDE 8.0 software. Applying inversely Ground Motion Prediction Equations (GMPEs) and concerning the distance to the studied paleolandslide, a possible earthquake inducing a seismic coefficient (\(k_{h}\)) ≥ \(a_{c}\) was determined. Therefore, a near active fault(s) capable of generating an earthquake magnitude inducing a Peak Ground Acceleration (PGA) ≥ \({a}_{c}\) at the paleolandslide location was designated as the possible seismogenic source of the slope instability. Intersecting these results, potential paleoseismic events which could have caused several slope instabilities were determined. Thus, a new methodology was developed, which allowed to determine the main seismogenic sources capable of inducing the modelled instabilities in each studied subarea in the Precordillera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abrahamson NA, Somerville PG (1996) Effects of the hanging wall and footwall on ground motions recorded during the northridge earthquake. B Seismol Soc Am 86(1B):S93–S99

    Google Scholar 

  • Abrahamson N, Silva W (2008) Summary of the Abrahamson & Silva NGA ground-motion relations. Earthq Spectra 24(1):67–97

    Google Scholar 

  • Ahumada EA, Costa CH (2009) Antithetic linkage between oblique quaternary thrusts at the andean front, argentine precordillera. J S Am Earth Sci 28(3):207–216

    Google Scholar 

  • Allmendinger RW, Judge PA (2014) The argentine precordillera: a foreland thrust belt proximal to the subducted plate. Geosphere 10(6):1203–1218

    Google Scholar 

  • Alvarado P, Pardo M, Gilbert H, Miranda S, Anderson M, Sáez M, Beck S (2009) Flat-slab subduction and crustal models for the seismically active sierras pampeanas region of argentina. In: Kay SM, Ramos VA, Dickinson WR (ed) Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision. Geol Soc Am 204:261–278

  • Anderson M, Alvarado P, Zandt G, Beck S (2007) Geometry and brittle deformation of the subducting nazca plate, Central Chile and Argentina. Geophys J Int 171(1):419–434

    Google Scholar 

  • Antinao JL, Gosse J (2009) Large rockslides in the Southern Central Andes of Chile 32°-34.5°S: tectonic control and significance for quaternary landscape evolution. Geomorphology 104:117–133

    Google Scholar 

  • Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21(18–19):1935–2017

    Google Scholar 

  • Ballantyne CK, Wilson P, Gheorghiu D, Rodés À (2014) Enhanced rock-slope failure following ice-sheet deglaciation: timing and causes. Earth Surf Proc Land 39(7):900–913

    Google Scholar 

  • Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10(1–2):1–54

    Google Scholar 

  • Bastías H (1985) Fallamiento Cuaternario en la región sismotectónica de Precordillera: San Juan, Argentina. Unpublished PhD Thesis. Universidad Nacional de San Juan, Argentina

  • Bieniawski ZT (1989) Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. John Wiley and Sons, New York

    Google Scholar 

  • Bisch P, Carvalho E, Degee H, Fajfar P, Fardis M, Franchin P et al (2012) Eurocode 8: seismic design of buildings worked examples. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Boore DM, Stewart JP, Seyhan E, Atkinson GA (2013) NGA-West2 equations for predicting response spectral accelerations for shallow crustal earthquakes. PEER Report No. 2013/05, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA

  • Bordonaro OL (1980) El Cámbrico en la quebrada de zonda, provincia de San Juan. Rev Asoc Geol Argent 35(1):26–40

    Google Scholar 

  • Cahill T, Isacks BL (1992) Seismicity and shape of the subducted nazca plate. J Geophys Res-Sol Earth 97(B12):17503–17529

    Google Scholar 

  • Cortés JM, Yamín MG, Pasini M (2005) La Precordillera sur, provincias de mendoza y San Juan. XVI Congreso Geológico Argent 1:395–402

    Google Scholar 

  • Cortés JM, Pasini M, Yamín MG (2005b) Paleotectonic controls on the distribution of quaternary deformation in the southern precordillera, Central Andes (31º30′-33ºSL). In VI International Symposium on Andean Geodynamics 186–189. Barcelona

  • Cortes JM, Terrizzano CM, Pasini MM, Yamín MG, Casa AL (2014) Quaternary tectonics along oblique deformation zones in the Central Andean retro-wedge between 31°30′S and 35°S. Geol Soc Lon Spec Publ 399(1):267–292

    Google Scholar 

  • Costa CH, Ahumada EA, Vázquez FR, Kröhling DM (2015) Holocene shortening rates of an andean-front thrust, southern precordillera, Argentina. Tectonophysics 664:191–201

    Google Scholar 

  • Costa C, Machette MN, Dart RL, Bastías H, Paredes JD, Perucca LP et al (2000) Map and database of quaternary faults and folds in Argentina. US Geol Surv Open-File Rep 108:75

    Google Scholar 

  • Crosta GB, Frattini P (2008) Rainfall-induced landslides and debris flows. Hydrol Process Int J 22(4):473–477

    Google Scholar 

  • Crozier MJ (1992) Determination of paleoseismicity from landslides. In: Bell DH (ed) Landslides (Glissements de terrain). Proceedings of the VI International Symposium, Christchurch, New Zealand 2:1173–1180. Rotterdam

  • Dadson SJ, Hovius N, Chen H, Dade WB, Lin JC, Hsu ML et al (2004) Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 32(8):733–736

    Google Scholar 

  • De Martonne E (1935) Problèmes des régions arides sud-américaines. Ann Geogr 44(247):1–27

    Google Scholar 

  • Demoulin A, Pissart A, Schroeder C (2003) On the origin of late quaternary palaeolandslides in the Liège (E Belgium) area. Int J Earth Sci 92(5):795–805

    Google Scholar 

  • Esper-Angillieri MY, Perucca LP (2013) Mass movement in cordón de las osamentas, de La Flecha river basin, San Juan, Argentina. Quaternary Int 301:150–157

    Google Scholar 

  • ESRI (Environmental Systems Research Institute). Website: http://www.esri.com/software/arcgis/index.html (last accessed, April 24th, 2020)

  • Fauqué L, Cortés JM, Folguera A, Etcheverría M (2000) Avalanchas de rocas asociadas a neotectónica en el valle del río Mendoza, al sur de Uspallata. Rev Asoc Geol Argent 55(4):419–423

    Google Scholar 

  • Giambiagi LB, Mescua J, Folguera A, Martínez A (2010) Estructuras y cinemática de las deformaciones pre-andinas del sector sur de la Precordillera. Mendoza Rev Asoc Geol Argent 66(1):5–20

    Google Scholar 

  • Giambiagi LB, Mescua JF, Heredia N, Farías P, García-Sansegundo J, Fernández C et al (2014) Reactivation of paleozoic structures during cenozoic deformation in the cordon del plata and southern precordillera ranges (Mendoza, Argentina). J Iber Geol 40(2):309–320

    Google Scholar 

  • González-Díaz EF, Folguera A, Costa CH, Wright E, Ellisondo M (2006) Los grandes deslizamientos de la región septentrional neuquina entre los 36°-38°S: una propuesta de inducción sísmica. Rev Asoc Geol Argent 61(2):197–217

    Google Scholar 

  • Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslides volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci Lett 279(3–4):222–229

    Google Scholar 

  • Harp EL, Jibson RW (1996) Landslides triggered by the 1994 Northridge, California, earthquake. B Seismol Soc Am 86(1B):S319–S332

    Google Scholar 

  • Hawkins AB (1998) Aspects of rock strength. B Eng Geol Environ 57(1):17–30

    Google Scholar 

  • Hermanns RL, Strecker MR (1999) Structural and lithological controls on large quaternary rock avalanches (sturzstroms) in arid Northwestern Argentina. Geol Soc Am Bull 111(6):934–948

    Google Scholar 

  • Hermanns RL, Niedermann S, Garcia AV, Gómez JS, Strecker MR (2001) Neotectonics and catastrophic failure of mountain fronts in the southern intra-andean puna plateau Argentina. Geology 29(7):619–622

    Google Scholar 

  • Hoek E (1994) Strength of rock and rock masses. ISRM News J 2(2):4–16

    Google Scholar 

  • Hoek E, Brown ET (1980) Underground excavations in rock. CRC Press, Boca Raton

    Google Scholar 

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min 34(8):1165–1186

    Google Scholar 

  • Hoek E, Kaiser PK, Bawden WF (1995) Support of Underground excavations in hard rock. Balkema, Rotterdam

    Google Scholar 

  • Hynes-Griffin ME, Franklin AG (1984) Rationalizing the seismic coefficient method. US Army Corps of Engineers Waterways Experiment Station (WES/MP/GL-84–13, pp. 37)

  • IAEG (1990) Suggested nomenclature for landslides. Bull Int Assoc Eng Geol 41:13–16

    Google Scholar 

  • Instituto Nacional de Prevención Sísmica (INPRES). List of historical earthquakes, catalogue: http://contenidos.inpres.gov.ar/sismologia/historicos (last accessed, April 24th, 2020)

  • ISRM. International Society of Rock Mechanics (1981) Rock characterization. Pergamon Press, Oxford, Testing and Monitoring. ISRM Suggested Method

    Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Google Scholar 

  • Janbu N (1973) Slope stability computations. In: Poulos SJ, Hirschfeld RC, Casagrande A (eds) Embankment dam engineering: casagrande volume. Wiley, New York

    Google Scholar 

  • Jibson RW (1996) Use of landslides for paleoseismic analysis. Eng Geol 43(4):291–323

    Google Scholar 

  • Jibson RW (2011) Methods for assessing the stability of slopes during earthquakes – a retrospective. Eng Geol 122(1–2):43–50

    Google Scholar 

  • Jibson RW, Harp EL (2012) Extraordinary distance limits of landslides triggered by the 2011 mineral, virginia Earthquake. B Seismol Soc Am 102(6):2368–2377

    Google Scholar 

  • Jibson RW, Harp EL (2016) Ground motions at the outermost limits of seismically triggered landslides. B Seismol Soc Am 106(2):708–719

    Google Scholar 

  • Jordan TE, Allmendinger RW, Damanti JF, Drake RE (1993) Chronology of motion in a complete thrust belt: the precordillera, 30–31 S. Andes Mountains J Geol 101(2):135–156

    Google Scholar 

  • Junquera-Torrado S (2020) Análisis de los mecanismos de ruptura sísmica de procesos de remoción en masa en la Precordillera Andina (31°-33°S) a partir de modelos 2D de estabilidad de laderas. Unpublished PhD Thesis. Universidad Nacional Córdoba, Argentina

  • Junquera-Torrado S, Moreiras SM, Sepúlveda SA (2019) Distribution of landslides along the andean active orogenic front (Argentinean Precordillera 31–33°S). Quat Int 512:18–34

    Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95(4):406–421

    Google Scholar 

  • Keefer DK (1987) Landslides as indicators of prehistoric earthquakes. Directions in paleoseismology. US Geological Survey Open File report, 87673, 178180

  • Keefer DK (1994) The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorphology 10:265–284

    Google Scholar 

  • Keefer DK (2002) Investigating landslides caused by earthquakes - a historical review. Surv Geophys 23(6):473–510

    Google Scholar 

  • Keller M (1999) Argentine Precordillera, sedimentary and plate tectonic history of a Laurentian crustal fragment in South America. Geol Soc Am Spec Pap 341:1–131

    Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslides, earthquakes, and erosion. Earth Planet Sc Lett 229(1–2):45–59

    Google Scholar 

  • Marinos P, Hoek E (2000) GSI: a geologically friendly tool for rock mass strength estimation. Proceedings of the GeoEng2000 at the International Conference on Geotechnical and Geological Engineering 1422–1442, Melbourne

  • Meunier P, Hovius N, Haines AJ (2007) Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophys Res Lett. https://doi.org/10.1029/2007GL031337

    Article  Google Scholar 

  • Mingorance F (1998) Evidencias de Paleoterremotos en la falla activa La Cantera-Cinturón de empuje de la Precordillera. San Juan, Argentina. In: X Congreso Latinoamericano de Geología and VI Congreso Nacional de Geología Económica 2:161–166. Buenos Aires

  • Mingorance F (2006) Morfometría de la escarpa de falla histórica identificada al norte del cerro La Cal, zona de falla La Cal. Mendoza Rev Asoc Geol Argent 61(4):620–638

    Google Scholar 

  • Moreiras SM (2006) Chronology of a Pleistocene rock avalanche probable linked to neotectonic, Cordón del Plata (Central Andes) Mendoza-Argentina. Quat Int 148(1):138–148

    Google Scholar 

  • Moreiras SM, Páez SM (2015) Historical damage and earthquake environmental effects related to shallow intraplate seismicity of Central Western Argentina. geodynamic processes in the andes of Central Chile and Argentina. Geol Soc Lon 399:369–382

    Google Scholar 

  • Moreiras SM, Sepúlveda SA (2015) Megalandslides in the andes of central Chile and Argentina (32°-34°S) and potential hazards. Geol Soc Lon Spec Publ 399(1):329–344

    Google Scholar 

  • Moreiras SM, Giambiagi LB, Spagnotto S, Nacif S, Mescua J, Toural R (2014) El frente orogénico activo de Los Andes centrales a la latitud de la ciudad de Mendoza (32°50’-33°S). Andean Geol 41(2):342–361

    Google Scholar 

  • Moreiras SM, Hermanns RL, Fauqué L (2015) Cosmogenic dating of rock avalanches constraining Quaternary stratigraphy and regional neotectonics in the Argentine Central Andes (32°S). Quat Sci Rev 112:45–58

    Google Scholar 

  • Pagliaroli A, Lanzo G, D’Elia B (2006) Numerical study of the topography effects at the Nicastro (Southern Italy) cliff and comparison with EC8 recommendations. In: Proceedings Workshop of ETC12 Evaluation Committee for the Application of EC8 209–218. Athens.

  • Paolucci R (2006) Numerical investigation of 3D seismic amplification by real steep topographic profiles and check of the EC8 topographic amplification coefficients. En Proceedings of the workshop on geotechnical evaluation and application of the seismic Eurocode 8, ETC-12 committee 187–191. Athens.

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sc 4(2):439–473

    Google Scholar 

  • Penna IM, Hermanns RL, Niedermann S, Folguera A (2011) Multiple slope failures associated with neotectonic activity in the Southern Central Andes (37–37 30′ S), Patagonia Argentina. Geol Soc Am Bull 123(9–10):1880–1895

    Google Scholar 

  • Perucca LP, Moreiras SM (2006) Liquefaction phenomena associated with historical earthquakes in San Juan and Mendoza Provinces Argentina. Quat Int 158(1):96–109

    Google Scholar 

  • Perucca LP, Moreiras SM (2008) Indicative structures of paleoseismicity in the acequión river valley, san juan province Central-Western Argentina. Geodin Acta 21(3):93–105

    Google Scholar 

  • Perucca LP, Audemard F, Pantano A, Vargas H, Ávila C, Onorato MR et al (2013) Fallas cuaternarias con vergencias opuestas entre precordillera central y oriental, provincia de San Juan. Rev Asoc Geol Argent 70(2):291–302

    Google Scholar 

  • Philip H, Ritz JF (1999) Gigantic paleolandslide associated with active faulting along the Bogd fault (Gobi-Altay, Mongolia). Geology 27(3):211–214

    Google Scholar 

  • Pilger RH (1981) Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes. Geol Soc Am Bull 92(7):448–456

    Google Scholar 

  • Pinto L, Hérail G, Sepúlveda SA, Krop P (2008) A Neogene giant landslide in tarapacá, northern Chile: a signal of instability of the westernmost altiplano and palaeoseismicity effects. Geomorphology 102(3–4):532–541

    Google Scholar 

  • Quartino BJ, Zardini RA, Amos AJ (1971) Estudio y exploración geológica de la región Barreal-Calingasta, provincia de San Juan. República Argentina, Asociación Geológica Argentina, Buenos Aires

    Google Scholar 

  • Ramos VA (1999) Las provincias geológicas del territorio argentino. In: Caminos R (ed) Geología Argentina. Instituto de Geología y Recursos Minerales Segemar

  • Ramos VA, Cristallini EO, Pérez DJ (2002) The pampean flat-slab of the Central Andes. J S Am Earth Sci 15(1):59–78

    Google Scholar 

  • Rocscience Inc (2018) Software slide version 8.0. Toronto, ON, Canada

  • Rodríguez CE, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980–1997. Soil Dyn Earthq Eng 18(5):325–346

    Google Scholar 

  • Rodríguez-Peces MJ, García-Mayordomo J, Azañón JM, Arévalo JMI, Pintor JJ (2011) Constraining pre-instrumental earthquake parameters from slope stability back-analysis: palaeoseismic reconstruction of the Güevéjar landslide during the 1st November 1755 Lisbon and 25th December 1884 Arenas del Rey earthquakes. Quat Int 242(1):76–89

    Google Scholar 

  • Sarsby R (2000) Environmental geotechnics. Thomas Telford Ltd, London

    Google Scholar 

  • Schmidt S, Hetzel R, Mingorance F, Ramos VA (2011) Coseismic displacements and Holocene slip rates for two active thrust faults at the mountain front of the Andean Precordillera (∼ 33°S). Tectonics 30:TC5011

  • Serey A, Piñero-Feliciangeli L, Sepúlveda SA, Poblete F, Petley DN, Murphy W (2019) Landslides induced by the 2010 Chile megathrust earthquake: a comprehensive inventory and correlations with geological and seismic factors. Landslides 16(6):1153–1165

    Google Scholar 

  • Siame LL, Bellier O, Sébrier M, Araujo M (2005) Deformation partitioning in flat subduction setting: Case of the Andean foreland of western Argentina (28°S-33°S). Tectonics 24(5):TC5003, 1–24

  • Siame LL, Sébrier M, Bellier O, Bourlés D, Castano JC, Araujo M (1997) Geometry, segmentation and displacement rates of the El tigre fault, san juan province (Argentina) from SPOT image analysis and 10Be datings. Ann Tectonicae 11(1–2):3–26

    Google Scholar 

  • Smalley R Jr, Pujol J, Regnier M, Chiu JM, Chatelain JL, Isacks BL et al (1993) Basement seismicity beneath the Andean Precordillera thin-skinned thrust belt and implications for crustal and lithospheric behavior. Tectonics 12(1):63–76

    Google Scholar 

  • Tang C, Zhu J, Qi X, Ding J (2011) Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: a case study in the Beichuan area of China. Eng Geol 122(1–2):22–33

    Google Scholar 

  • Tapia-Baldis CT, Rothis LM, Perucca LP, Esper-Angillieri MY, Vargas H, Ponce D, Allis C (2018) Analysis of La dehesa paleo-landslide. Central Pre-Andes of Argentina. J S Am Earth Sci 83:1–13

    Google Scholar 

  • VDC (Strong-Motion Virtual Data Center). (2012). Website: https://strongmotioncenter.org/vdc/scripts/earthquakes.plx (last accessed, April 24th, 2020)

  • Von Gosen W (1992) Structural evolution of the argentine precordillera: the Río San Juan section. J Struct Geol 14(6):643–667

    Google Scholar 

  • Von Gosen W (1995) Polyphase structural evolution of the southwestern argentine precordillera. J S Am Earth Sci 8(3–4):377–404

    Google Scholar 

  • Wartman J, Dunham L, Tiwari B, Pradel D (2013) Landslides in eastern honshu induced by the 2011 Tohoku earthquake. B Seismol Soc Am 103(2B):1503–1521

    Google Scholar 

  • Wick E, Baumann V, Jaboyedoff M (2010) Report on the impact of the 27 February 2010 earthquake Chile Mw 8.8 on rockfalls in the Las Cuevas valley Argentina. Nat Hazard Earth Sys 10(9):1989–1993

    Google Scholar 

  • Wilson RC, Keefer D (1985) Predicting aerial limit of earthquake induced landsliding. Evaluating earthquake hazard in the Los Angeles Region, US Geological Survey Professional Paper, p 1600

    Google Scholar 

  • Xu C, Xu X, Yao X, Dai F (2014) Three nearly complete inventories of landslides triggered by the may wenchuan Mw earthquake of China and their spatial distribution statistical analysis. Landslides 11(3):441–461

    Google Scholar 

  • Zapata TR, Allmendinger RW (1996) Thrust-front zone of the precordillera, Argentina: a thick-skinned triangle zone. AAPG Bull 80(3):359–381

    Google Scholar 

Download references

Acknowledgements

The laboratory tests were carried out thanks to the disinterested help of Ester Cano, director of the Rock Mechanics Laboratory of the Instituto de Investigaciones Mineras, as well as Francisco Zabala and Rubén Rodari, from the Instituto de Investigaciones Antisísmicas, both in the city of San Juan, Argentina. The first author is very grateful to Marc Bertrán, Rafael Toural, Mariana Correas, Rodrigo Quiroga and Matías Barrionuevo for their invaluable help during fieldwork. He also thanks Leandro Ferrón for the illustration of Fig. 5a. Marcela Cioccale, Diego Fernández, Luis Guarracino and two anonymous reviewers are very thanked for many useful and constructive comments. This work was supported by grants from ANLAC program (Res. 571/15) and the SeCTyP (Cod. A06/669; Res. 3820/2016) of National University of Cuyo as well as the Ministry of Defence (PIDEF 05/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Junquera-Torrado.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junquera-Torrado, S., Moreiras, S.M., Rodríguez-Peces, M.J. et al. Linking earthquake-triggered paleolandslides to their seismic source and to the possible seismic event that originated them in a portion of the Argentine Precordillera (31°–33°S). Nat Hazards 106, 43–78 (2021). https://doi.org/10.1007/s11069-020-04447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-020-04447-1

Keywords

Navigation