Skip to main content

Advertisement

Log in

Potential effects of climate changes on soil–atmosphere interaction and landslide hazard

  • Short Communication
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In the recent years, the scientific community is involved in an intense debate around the effects of global warming. In fact, this could determine valuable changes in atmospheric forcing that govern the soil–atmosphere interaction and, in turn, water budget in the subsoil, with unpredictable consequences, inter alia, on geohydrological hazards. An early and proper assessment of the magnitude of such phenomena would be of great importance in establishing the priorities and timing in adaptation strategies. The paper reports some results obtained through a simulation chain which accounts for the potential climatic changes induced by two different socioeconomic concentration scenarios in atmospheric forcing and consequent changes in soil moisture and, then, slope response. The analyses concern a site located in Southern Italy, representative of Mediterranean area, deemed an “hot spot” for future climate changes. It is shown that, beyond the variations induced by climate changes, soil nature and land cover could play a major role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Anderson E (1973) National Weather Service river forecast system—snow accumulation and ablation model. Hydrologic Research Laboratory, National Oceanic and Atmospheric Administration, Silver Spring, MD

    Google Scholar 

  • Arnold JG, Williams JR, Nicks AD, Sammons NB (1989) SWRRB, a simulator for water resources in rural basins, Agricultural Research Service, USDA. Texas A&M University Press, College Station, TX

    Google Scholar 

  • Bormann H (2012) Assessing the soil texture-specific sensitivity of simulated soil moisture to projected climate change by SVAT modelling. Geoderma 185–186:73–83. doi:10.1016/j.geoderma.2012.03.021

    Article  Google Scholar 

  • Bucchignani E, Montesarchio M, Zollo AL, Mercogliano P (2015) High resolution climate simulations with COSMO-CLM over Italy: performance evaluation and climate projections for the XXI century. Int J Climatol. doi:10.1002/joc.4379

    Google Scholar 

  • Campbell GS (1974) A simple method for determining unsaturated hydraulic conductivity from moisture retention data. Soil Sci 117(6):311–314

    Article  Google Scholar 

  • Comegna L, Picarelli L, Bucchignani E, Mercogliano P (2013) Potential effects of incoming climate changes on the behaviour of slow active landslides in clay. Landslides 10:373–391

    Article  Google Scholar 

  • Cook J, Nuccitelly D, Green SA et al (2013) Quantifying the consensus on anthropogenic global warming in the scientific literature. Environ Res Lett 8:1–7. doi:10.1088/1748-9326/8/2/024024

    Article  Google Scholar 

  • Damiano E, Mercogliano P (2013) Potential effects of climate change on slope stability in unsaturated pyroclastic soils. In: Margottini C., Canuti P., Sassa K. (Eds) Book Series “Landslide Science and Practice”, Vol. 4 “Global Environmental Change”, 4:15–25

  • Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) Should we apply bias correction to global and regional climate model data? Hydrol Earth Syst Sci 16:3391–3404. doi:10.5194/hess-16-3391-2012

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impact studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578

    Article  Google Scholar 

  • Gudmundsson L, Bremnes JB, Haugen JE, Engen Skaugen T (2012) Technical Note: downscaling RCM precipitation to the station scale using statistical transformations—a comparison of methods. Hydrol Earth Syst Sci 9:6185–6201

    Article  Google Scholar 

  • Horton RE (1919) Rainfall interception. Mon Weather Rev 47(9):603–623

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge (United Kingdom) and New York (NY, USA). Cambridge University Press, Cambridge, p 29

    Google Scholar 

  • Istanbulluoglu E, Bras RL (2006) On the dynamics of soil moisture, vegetation and erosion: implications of climate variability and change. Water Resour Res 42(6):W06418. doi:10.1029/2005WR004113

    Article  Google Scholar 

  • Knisel WG, Moffitt DC, Dumper TA (1985) Representing seasonally frozen soil with the CREAMS model. Am Soc Agric Eng 28:1487–1492

    Article  Google Scholar 

  • Lafon T, Dadson S, Buys G, Prudhomme C (2013) Bias correction of daily precipitation simulated by a regional climate model: a comparison of methods. Int J Climatol 33:1367–1381

    Article  Google Scholar 

  • Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1:511–514. doi:10.1038/ngeo262

    Article  Google Scholar 

  • Maraun D (2013) Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J Clim 26:2137–2143. doi:10.1175/JCLI-D-12-00821.1

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themessl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and end user. Rev Geophys 48:RG3003. doi:10.1029/2009RG00314

  • Meinshausen M, Smith S, Calvin K, Daniel J, Kainuma M, Lamarque JF, Matsumoto K, Montzka S, Raper S, Riahi K, Thomson A, Velders G, van Vuuren DP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 19(1–2):213–241. doi:10.1007/s10584-011-0156-z

    Article  Google Scholar 

  • Naden PS, Watts CD (2001) Estimating climate-induced change in Soil Moisture at the Landscape Scale: an application to five areas of ecological interest in the UK. Clim Change 49(4):411–440

    Article  Google Scholar 

  • Olivares L, Picarelli L (2003) Shallow flowslides triggered by intense rainfalls on natural slopes covered by loose unsaturated pyroclastic soils. Géotechnique 53(2):283–288

    Article  Google Scholar 

  • Penman HL (1963) Vegetation and hydrology Technical Comment No. 53. Commonwealth Bureau of Soils, Harpenden

    Google Scholar 

  • Ritchie JT (1972) A model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8(5):1204–1213

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO–CLM (CCLM). Meteorol Z 17(4):347–348. doi:10.1127/0941-2948/2008/0309

    Article  Google Scholar 

  • Schroeder PR, Dozier TS, Zappi PA, McEnroe BM, Sjostrom JW, Peyton RL (1994) The hydrologic evaluation of landfill performance (HELP) model: engineering documentation for Version 3. EPA/600/R-94/168b. U.S Environmental Protection Agency Office of Research and Development, Washington, DC

    Google Scholar 

  • Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli P, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J Clim 24:4368–4384

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138. doi:10.3354/cr00953

    Article  Google Scholar 

  • USDA Soil Conservation Service (1985) National engineering handbook, section 4, hydrology. US Government Printing Office, Washington, DC

    Google Scholar 

  • van Vuuren DP, Edmonds J, Thomson A, Riahi K, Kainuma M, Matsui T, Hurtt GC, Lamarque JF, Meinshausen M, Smith S, Granier C, Rose SK, Hibbard KA (2011) Representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • Villani V, Rianna G, Mercogliano P, Zollo AL (2015) Statistical approaches versus weather generator to downscale RCM outputs to slope scale for stability assessment: a comparison of performances. Electron J Geotech Eng 20(4):1495–1515

    Google Scholar 

  • Zollo AL, Rillo V, Bucchignani E, Montesarchio M, Mercogliano P (2015) Extreme temperature and precipitation events over Italy: assessment of high resolution simulations with COSMO-CLM and future scenarios. Int J Climatol. doi:10.1002/joc.4401

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Rianna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rianna, G., Comegna, L., Mercogliano, P. et al. Potential effects of climate changes on soil–atmosphere interaction and landslide hazard. Nat Hazards 84, 1487–1499 (2016). https://doi.org/10.1007/s11069-016-2481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2481-z

Keywords

Navigation