Skip to main content

Advertisement

Log in

Linking land subsidence over the Yellow River delta, China, to hydrocarbon exploitation using multi-temporal InSAR

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Yellow River delta, the second largest oil and gas base of China, has been subsiding due to the combination effects of human and natural factors. Increasing anthropogenic activities, like hydrocarbon exploitation, accelerate the subsidence, gradually threatening the stability of infrastructures and causing the inhabitants more vulnerable to natural hazards. Interferometric synthetic aperture radar (InSAR) techniques can measure ground movements in high resolution. The purpose of this study is to map the spatial and temporal variations in surface deformation over the Yellow River delta using a Small Baseline Subset InSAR technique and to assess the role of hydrocarbon exploitation in subsidence. The Stanford Method for Persistent Scatterers/Multi-Temporal InSAR (StaMPS/MTI) package is employed to process ENVISAT ASAR images collected from 2007 to 2010. InSAR-derived surface deformation measurements are then compared to geological and petroleum geologic data, oil field data and hydrocarbon reservoir inversion information to address the causes of the observed subsidence. Spirit leveling data and standard deviation maps are used to verify the InSAR results and measurement accuracy. Consistent results of the two descending tracks indicate subsidence up to 40 mm/yr over oil field. The time-series deformation manifests that subsidence area and peak broaden over time and subsidence rate are approximately constant in Shikou oil field, while the rate decreases in Dongying oil field since 2009. Moreover, our results indicate that the land subsidence pattern is concentrated in hydrocarbon exploration field and has a good consistency with faults distributions. In addition, a multiple finite prolate ellipsoid sources model is implemented to model the InSAR-derived deformation in Shikou oil field. The model manifests that land subsidence and hydrocarbon exploitation can be quantitatively linked to each other. The intimate connection of surface deformation with reservoir change suggests that land subsidence over oil field in the Yellow River delta is primarily caused by hydrocarbon exploitation. The results provide new insights into the land subsidence mechanism in the Yellow River delta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barends FB, Brouwer FJ, Schröder FH (1995) Land subsidence: natural causes, measuring techniques, the Groningen gas fields. In: Proceedings of the fifth international symposium on land subsidence, The Hague, Netherlands, 16–20 October 1995. Brookfield, VT

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. Geosci Remote Sens IEEE Trans 40(11):2375–2383. doi:10.1109/TGRS.2002.803792

    Article  Google Scholar 

  • Carnec C, Fabriol H (1999) Monitoring and modeling land subsidence at the Cerro Prieto geothermal field, Baja California, Mexico, using SAR interferometry. Geophys Res Lett 26(9):1211–1214. doi:10.1029/1999GL900062

    Article  Google Scholar 

  • Chen JY, Li SF, Xiong Y, Bi YP (1998) Multiple petroleum systems in Tertiary extensional basins, east China: a case study of the Gunan-Fulin Basin. J Pet Geol 21(1):105–118. doi:10.1111/j.1747-5457.1998.tb00648.x

    Article  Google Scholar 

  • Cui BL, Li XY (2011) Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005). Geomorphology 127(1–2):32–40. doi:10.1016/j.geomorph.2010.12.001

    Article  Google Scholar 

  • Dennis JE, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. SIAM, Philadelphia, pp 227–228

    Book  Google Scholar 

  • Deschamps B, Henschel MD, Walter G, Ji C, Sato S, Gravelle S (2013) Multi-sensor/multi-beam InSAR ground deformation monitoring of water-flood oil fields. In: MultiTemp 2013: 7th international workshop on the analysis of multi-temporal remote sensing images. doi:10.1109/Multi-Temp.2013.6866018

  • Dixon TH, Amelung F, Ferretti A, Novali F, Rocca F, Dokka R, Sella G, Kim S-W, Wdowinski S, Whitman D (2006) Subsidence and flooding in New Orleans. Nature 441(7093):587–588. doi:10.1038/441587a

    Article  Google Scholar 

  • Dusseault M (2011) Geomechanical challenges in petroleum reservoir exploitation. KSCE J Civil Eng 15(4):669–678. doi:10.1007/s12205-011-0007-5

    Article  Google Scholar 

  • Fan H, Huang HJ, Zeng T (2006) Impacts of anthropogenic activity on the recent evolution of the Huanghe (Yellow) River Delta. J Coast Res 22(4):919–929. doi:10.2112/04-0150.1

    Article  Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L (2007) The shuttle radar topography mission. Rev Geophys. doi:10.1029/2005RG000183

    Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. Geosci emote Sens IEEE Trans 49(9):3460–3470. doi:10.1109/TGRS.2011.2124465

    Article  Google Scholar 

  • Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res Solid Earth 94(B7):9183–9191. doi:10.1029/JB094iB07p09183 (1978–2012)

    Article  Google Scholar 

  • Galloway D, Jones DR, Ingebritsen SE (1999) Land subsidence in the United States. US Geological Survey Reston, Reston

    Google Scholar 

  • Geertsma J (1973) Land subsidence above compacting oil and gas reservoirs. J Pet Technol 25(6):734–744. doi:10.2118/3730-PA

    Article  Google Scholar 

  • Guo XW, He S, Liu KY, Song GQ, Wang XJ, Shi ZS (2010) Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying depression, Bohai Bay Basin, China. AAPG Bull 94(12):1859–1881. doi:10.1306/05191009179

    Article  Google Scholar 

  • Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Kluwer Academic Publishers, Netherlands

    Book  Google Scholar 

  • Higgins S, Overeem I, Tanaka A, Syvitski JP (2013) Land subsidence at aquaculture facilities in the Yellow River delta, China. Geophys Res Lett 40(15):3898–3902. doi:10.1002/grl.50758

    Article  Google Scholar 

  • Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett. doi:10.1029/2008GL034654

    Google Scholar 

  • Hooper A (2010) A statistical-cost approach to unwrapping the phase of InSAR time series. In: Proceeding of international workshop on ERS SAR interferometry, Frascati, Italy

  • Hooper A, Segall P, Zebker H (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophys Res Solid Earth. doi:10.1029/2006JB004763 (1978–2012)

    Google Scholar 

  • Hooper A, Bekaert D, Spaans K, Arıkan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514:1–13. doi:10.1016/j.tecto.2011.10.013

    Article  Google Scholar 

  • Kampes BM (2006) Radar interferometry: persistent scatterer technique. Springer, Dordrecht

    Google Scholar 

  • Kampes BM Hanssen RF, Perski Z (2003) Radar interferometry with public domain tools. In: Proceedings of FRINGE

  • Kosloff D, Scott R, Scranton J (1980a) Finite element simulation of Wilmington oil field subsidence: I. Linear modelling. Tectonophysics 65(3):339–368. doi:10.1016/0040-1951(80)90082-7

    Article  Google Scholar 

  • Kosloff D, Scott R, Scranton J (1980b) Finite element simulation of Wilmington oil field subsidence: II. Nonlinear modelling. Tectonophysics 70(1):159–183. doi:10.1016/0040-1951(80)90025-6

    Article  Google Scholar 

  • Lanari R, Mora O, Manunta M, Mallorquí JJ, Berardino P, Sansosti E (2004) A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. Geosci Remote Sens IEEE Trans 42(7):1377–1386. doi:10.1109/TGRS.2004.828196

    Article  Google Scholar 

  • Lanari R, Casu F, Manzo M, Zeni G, Berardino P, Manunta M, Pepe A (2007) An overview of the small baseline subset algorithm: a DInSAR technique for surface deformation analysis. Pure appl Geophys 164(4):637–661. doi:10.1007/s00024-007-0192-9

    Article  Google Scholar 

  • Lewis RW, Sukirman Y (1993) Finite element modelling of three-phase flow in deforming saturated oil reservoirs. Int J Numer Anal Methods Geomech 17(8):577–598. doi:10.1002/nag.1610170804

    Article  Google Scholar 

  • Lewis RW, Sukirman Y (1994) Finite element modelling for simulating the surface subsidence above a compacting hydrocarbon reservoir. Int J Numer Anal Methods Geomech 18(9):619–639. doi:10.1002/nag.1610180904

    Article  Google Scholar 

  • Li PL (2004) Oil/gas distribution patterns in Dongying depression, Bohai Bay basin. J Pet Sci Eng 41(1–3):57–66. doi:10.1016/S0920-4105(03)00143-8

    Article  Google Scholar 

  • Liu Y, Huang HJ (2013) Characterization and mechanism of regional land subsidence in the Yellow River delta, China. Nat Hazards 2013(68):687–709. doi:10.1007/s11069-013-0648-4

    Article  Google Scholar 

  • Liu P, Li QQ, Li ZH, Hoey T, Liu YX, Wang CS (2015a) Land subsidence over oilfields in the Yellow River delta. Remote Sens 7(2):1540–1564. doi:10.3390/rs70201540

    Article  Google Scholar 

  • Liu YL, Huang HJ, Dong JF (2015b) Large-area land subsidence monitoring and mechanism research using the small baseline subset interferometric synthetic aperture radar technique over the Yellow River delta, China. J Appl Remote Sens 9(1):096019. doi:10.1117/1.JRS.9.096019

    Article  Google Scholar 

  • Lu Z, Danskin WR (2001) InSAR analysis of natural recharge to define structure of a ground-water basin, San Bernardino, California. Geophys Res Lett 28(13):2661–2664. doi:10.1029/2000GL012753

    Article  Google Scholar 

  • Lu Z, Masterlark T, Dzurisin D, Rykhus R, Wicks C (2003) Magma supply dynamics at Westdahl volcano, Alaska, modeled from satellite radar interferometry. J Geophys Res Solid Earth 108(B7):2354. doi:10.1029/2002JB002311

    Article  Google Scholar 

  • Lu Z, Masterlark T, Dzurisin D (2005) Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: magma supply dynamics and postemplacement lava flow deformation. J Geophys Res Solid Earth. doi:10.1029/2004JB003148 (1978–2012)

    Google Scholar 

  • Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys 36(4):441–500. doi:10.1029/97RG03139

    Article  Google Scholar 

  • Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Earthq Res Inst Univ Tokyo 36:99–134

    Google Scholar 

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328(5985):1517–1520. doi:10.1126/science.1185782

    Article  Google Scholar 

  • Pang XQ, Li MW, Li SM, Jin ZJ (2003) Geochemistry of petroleum systems in the Niuzhuang South Slope of Bohai Bay basin. Part 2: evidence for significant contribution of mature source rocks to “immature oils” in the Bamianhe field. Org istry 34(7):931–950. doi:10.1016/S0146-6380(03)00032-9

    Google Scholar 

  • Pearse J, Singhroy V, Samsonov S, Li J (2014) InSAR observations and modeling of anthropogenic surface deformation in the Alberta Oil sands. In: AGU Fall Meeting Abstracts

  • Pratt WE, Johnson DW (1926) Local subsidence of the Goose Creek oil field. J Geol 34(7):577–590. http://www.jstor.org/stable/30056838

  • Rosen PA, Hensley S, Peltzer G, Simons M (2004) Updated repeat orbit interferometry package released. EOS Trans Am Geophys Union 85(5):47. doi:10.1029/2004EO050004

    Article  Google Scholar 

  • Sansosti E, Casu F, Manzo M, Lanari R (2010) Space-borne radar interferometry techniques for the generation of deformation time series: an advanced tool for Earth’s surface displacement analysis. Geophys Res Lett. doi:10.1029/2010GL044379

    Google Scholar 

  • Schmidt DA, Bürgmann R (2003) Time‐dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. J Geophys Res Solid Earth 108(B9):ETG 4-1–ETG 4-13. doi:10.1029/2002JB002267 (1978–2012)

    Article  Google Scholar 

  • Shi CX, Zhang D, You LY, Li BY, Zhang ZL, Zhang OY (2007) Land subsidence as a result of sediment consolidation in the Yellow River delta. J Coast Res 23(1):173–181. doi:10.2112/39951.1

    Google Scholar 

  • Stancliffe RS, van der Kooij MW (2001) The use of satellite-based radar interferometry to monitor production activity at the Cold Lake heavy oil field, Alberta, Canada. AAPG Bull 85(5):0781–0794

    Google Scholar 

  • Strozzi T, Teatini P, Tosi L, Wegmüller U, Werner C (2013) Land subsidence of natural transitional environments by satellite radar interferometry on artificial reflectors. J Geophys Res Earth Surf 118(2):1177–1191. doi:10.1002/jgrf.20082

    Article  Google Scholar 

  • Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vorosmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2(10):681–686. doi:10.1038/ngeo629

    Article  Google Scholar 

  • Tamburini A, Bianchi M, Giannico C, Novali F (2010) Retrieving surface deformation by PSInSAR™ technology: a powerful tool in reservoir monitoring. Int J Greenh Gas Control 4(6):928–937. doi:10.1016/j.ijggc.2009.12.009

    Article  Google Scholar 

  • Tamburini A, Del Conte S, Ferretti A, Cespa S (2014) Advanced satellite InSAR technology for fault analysis and tectonic setting assessment. In: Application to reservoir management and monitoring. IPTC 2014: international petroleum technology conference. doi:10.2523/17574-MS

  • Tosi L, Teatini P, Strozzi T (2013) Natural versus anthropogenic subsidence of Venice. Sci Rep 2710(3):1–9. doi:10.1038/srep02710

    Google Scholar 

  • van der Kooij M, Mayer D (2002) The application of satellite radar interferometry to subsidence monitoring in the Belridge and Lost Hills fields, California. In: Geoscience and remote sensing symposium, 2002. IGARSS’02. 2002 IEEE International. doi:10.1109/IGARSS.2002.1024987

  • Vasco DW, Ferretti A, Novali F (2008) Reservoir monitoring and characterization using satellite geodetic data: interferometric synthetic aperture radar observations from the Krechba field, Algeria. Geophysics 73(6):WA113–WA122. doi:10.1190/1.2981184

    Article  Google Scholar 

  • Wang H, Wright TJ, Yu YP, Lin H, Jiang LL, Li CH, Qiu GX (2012) InSAR reveals coastal subsidence in the Pearl River delta, China. Geophys J Int 191:1119–1128. doi:10.1111/j.1365-246X.2012.05687.x

    Article  Google Scholar 

  • Xu HB, Dvorkin J, Nur A (2001) Linking oil production to surface subsidence from satellite radar interferometry. Geophys Res Lett 28(7):1307–1310. doi:10.1029/2000GL012483

    Article  Google Scholar 

  • Chen KL, Yuan J, Yan CG Shandong Yellow River Delta National Nature Reserve, China. http://www.ramsar.org/sites/default/files/documents/pdf/lib/hbk4-07cs05.pdf

  • Yang XM, Davis PM, Dieterich JH (1988) Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. J Geophys Res Solid Earth 93(B5):4249–4257. doi:10.1029/JB093iB05p04249

    Article  Google Scholar 

  • Zebker HA, Villasenor J (1992) Decorrelation in interferometric radar echoes. Geosci Remote Sens IEEE Trans 30(5):950–959. doi:10.1109/36.175330

    Article  Google Scholar 

  • Zhang SW (2004) The application of an integrated approach in exploration of lacustrine turbidites in Jiyang Sub-basin, Bohai Bay basin, China. J Pet Sci Eng 41(1–3):67–77. doi:10.1016/S0920-4105(03)00144-X

    Article  Google Scholar 

  • Zhang SW, Wang YS, Shi DS, Xu HM, Pang XQ, Li MW (2004) Fault-fracture mesh petroleum plays in the Jiyang Superdepression of the Bohai Bay basin, eastern China. Mar Pet Geol 21(6):651–668. doi:10.1016/j.marpetgeo.2004.03.007

    Article  Google Scholar 

  • Zhang LY, Liu Q, Zhu RF, Li Z, Lu XC (2009) Source rocks in Mesozoic–Cenozoic continental rift basins, east China: a case from Dongying depression, Bohai Bay basin. Org Geochem 40(2):229–242. doi:10.1016/j.orggeochem.2008.10.013

    Article  Google Scholar 

  • Zhang JZ, Huang HJ, Bi HB (2014) Land subsidence in the modern Yellow River delta based on InSAR time series analysis. Nat Hazards 75(3):2385–2397. doi:10.1007/s11069-014-1434-7

    Article  Google Scholar 

Download references

Acknowledgments

This study used ENVISAT SAR imagery acquired under a Category 1 research project C1F.19709 from the European Space Agency. We also thank JPL for ROI_PAC, DEOS for DORIS and Andy Hooper for StaMPS. This work is funded by the National Natural Science Foundation of China, No. 41276082, 41306190 and the Knowledge Innovative Program of Chinese Academy of Sciences, No. KZCX2-EW-207. We are grateful to Dr. Peng Liu, Feifei Qu, Lingyun Ji and He Sun and Prof. Hua Liu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Huang, H., Liu, Y. et al. Linking land subsidence over the Yellow River delta, China, to hydrocarbon exploitation using multi-temporal InSAR. Nat Hazards 84, 271–291 (2016). https://doi.org/10.1007/s11069-016-2427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2427-5

Keywords

Navigation