Skip to main content
Log in

Tsunami hazard assessment of Indian coast

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The tsunami caused by the magnitude 9.1 Andaman–Sumatra earthquake in 2004 brought into limelight the vulnerability of Indian coast against the flooding hazard due to this natural phenomenon. The paper brings out the work carried out in relation to assessment of tsunami hazard along the Indian coast following a deterministic approach based on the method suggested by Japan Society of Civil Engineers. The tsunamigenic source zones around Indian coast are identified, and maximum tsunamigenic earthquake magnitude from each source zone, viz. Burma–Andaman–Sumatra, Makran and zone of diffused seismicity, is estimated. Several scenario earthquakes are postulated from each zone accounting for uncertainties in fault strike and dip. Tsunami hazard from these zones to Indian coast is estimated based on validated numerical tools at a grid spacing of 300 m, and hazard is presented in the form of maps. Important phenomena such as wave amplification in shallow waters and wave runup are captured in the analysis. The water levels are represented in terms of mean estimates and associated standard deviations in estimates reflecting uncertainty in evaluated levels. The assessment indicates higher vulnerability of the east coast and the southwestern coast of India as well as existence of several tsunami hot spots (regions with unusually high wave amplitude) along the Indian coast. In addition to increased understanding of tsunami vulnerability of Indian coast, the tsunami hazard maps presented in the paper will be useful during planning and engineering of coastal structures and infrastructure in selection of their safe grade elevations. The work presented here can be further enhanced by addressing uncertainties in maximum earthquake magnitudes, related rupture parameters and with better shallow water and coastal topography data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bapat A, Murty T (2008) Field survey of the December 26, 2004 Tsunami at Kanyakumari, India. Sci Tsunami Hazards 27(3):72–86

    Google Scholar 

  • Berryman K., Wallace L, Hayes G, Bird P, Wang K, Basili R, Lay T, Stein R, Sagiya T, Rubin C, Barreintos S, Kreemer C, Litchfield N, Pagani M, Gledhill K, Haller K, Costa C (2013) The GEM faulted earth subduction characterisation project, version 1.0, June 2013. GEM Faulted Earth Project. http://www.nexus.globalquakemodel.org/gem-faulted-earth/posts

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi:10.1029/2001GC000252

    Article  Google Scholar 

  • Bird P, Kagan YY (2004) Plate-tectonic analysis of shallow seismicity: apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bull Seismol Soc Am 94(6):2380–2399

    Article  Google Scholar 

  • Blaser L, Kruger F, Ohrnberger M, Scherbaum F (2010) Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull Seismol Soc Am 100(6):2914–2926. doi:10.1785/0120100111

    Article  Google Scholar 

  • Bull JM, Scrutton RA (1990) Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere. Nature 344:855–858

    Article  Google Scholar 

  • Burbidge D, Cummins P (2007) Assessing the threat to Western Australia from tsunami generated by earthquakes along the Sunda Arc. Nat Hazards 43(3):319–331. doi:10.1007/s11069-007-9116-3

    Article  Google Scholar 

  • Burbidge D, Cummins PR, Mleczko R, Thio HK (2008) A probabilistic tsunami hazard assessment for Western Australia. Pure Appl Geophys 165:2059–2088. doi:10.1007/s00024-008-0421-x

    Article  Google Scholar 

  • Chadha RK, Latha G, Yeh H, Peterson C, Katada T (2005) The tsunami of the great Sumatra earthquake of M 9.0 on 26 December 2004—impact on the east coast of India. Curr Sci 88(8):1297–1301

    Google Scholar 

  • Coffin, MF, Gahagan LM, Lawver LA (1998) Present-day plate boundary digital data compilation. University of Texas Institute for Geophysics Technical Report No. 174, pp 5. http://www.ig.utexas.edu/research/projects/plates/data.htm

  • ETOPO2v2 (2006) Global gridded 2-minute database. In: National Geophysical Data Center, National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce. http://www.ngdc.noaa.gov/mgg/global/etopo2.html

  • Fujii Y, Satake K (2007) Tsunami source of the 2004 Sumatra Andaman earthquake inferred from tide gauge and satellite data. Bull Seismol Soc Am 97(1A):S192–S207. doi:10.1785/0120050613

    Article  Google Scholar 

  • Gahalut VK, Gahalaut K (2007) Burma plate motion. J Geophys Res 112:B10402. doi:10.1029/2007JB004928

    Article  Google Scholar 

  • General Bathymetric Chart of the Oceans (GEBCO) (2008) The GEBCO_08 grid, version 20081212. http://www.gebco.net

  • Gopinath G, Løvholt F, Kaiser G, Harbitz CB, Srinivasa Raju K, Ramalingam M, Singh Bhoop (2014) Impact of the 2004 Indian Ocean tsunami along the Tamil Nadu coastline: field survey review and numerical simulations. Nat Hazards. doi:10.1007/s11069-014-1034-6

    Google Scholar 

  • Grilli ST, Ioualalen M, Asavanant J, Shi F, Kirby JT, Watts P (2007) Source constraints and model simulation of the Dec. 26, 2004 Indian Ocean tsunami. J Waterw Port Coast Ocean Eng 133(6):414–428. doi:10.1061/(ASCE)0733-950X(2007)133:6(414)

    Article  Google Scholar 

  • Gupta H, Gahalaut V (2009) Is the northern Bay of Bengal tsunamigenic? Bull Seismol Soc Am 99(6):3496–3501. doi:10.1785/0120080379

    Article  Google Scholar 

  • Heidarzadeh M, Pirooza MD, Zakerb NH, Yalciner AC, Mokhtarid M, Esmaeily A (2008a) Historical tsunami in the Makran Subduction Zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Eng 35(8–9):774–786. doi:10.1016/j.oceaneng.2008.01.017

    Article  Google Scholar 

  • Heidarzadeh M, Pirooz MD, Zaker NH, Synolakis CE (2008b) Evaluating tsunami hazard in the northwestern Indian Ocean. Pure appl Geophys 164:2045–2058. doi:10.1007/s00024-008-0415-8

    Article  Google Scholar 

  • Heidarzadeh M, Pirooz MD, Zaker NH (2009) Modeling the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Eng 36(5):368–376. doi:10.1016/j.oceaneng.2009.01.004

    Article  Google Scholar 

  • Herbert H, Sladen A, Schindele F (2007) Numerical modeling of the great 2004 Indian Ocean tsunami: focus on Mascarene islands. Bull Seismol Soc Am 97(1A):S208–S222

    Article  Google Scholar 

  • Hirata K, Satake K, Tanioka Y, Kuragano T, Hasegawa Y, Hayashi Y, Hamada N (2006) The 2004 Indian Ocean tsunami: tsunami source model from satellite altimetry. Earth Planets Space 58:195–201. doi:10.1186/BF03353378

    Article  Google Scholar 

  • Ilangovan D, Jayakumar S, Gowthaman R, Tirodkar G, Ganeshan P, Naik GN, Mani Murali R, Michael GS, Ramana MV, Naik KA (2005) Inundation, run-up heights, cross-section profiles and littoral environment along the Tamil Nadu Coast after 26th December 2004 Tsunami. Report No. NIO/TR-03/2005 National Institute of Oceanography Goa India. http://drs.nio.org/drs/bitstream/2264/230/1/NIO_TR_03_2005_1.pdf

  • Imamura F, Yalciner AC, Ozyurt G (2006) Tsunami modelling manual. http://ioc3.unesco.org/ptws/21/documents/TsuModelMan-v3-ImamuraYalcinerOzyurt_apr06.pdf

  • IMD (2015) Frequently asked questions on tropical cyclones. India Meteorological Department. http://www.imd.gov.in/section/nhac/dynamic/faq/FAQP.htm. Accessed March 2015

  • Jaiswal RK, Rastogi BK, Murty TS (2008a) Tsunamigenic sources in the Indian Ocean. Sci Tsunami Hazards 27(2):32–53

    Google Scholar 

  • Jaiswal RK, Singh AP, Rastogi BK (2008b) Simulation of the Arabian Sea tsunami propagation generated due to 1945 Makran Earthquake and its effect on western parts of Gujarat (India). Nat Hazards 48(2):245–258. doi:10.1007/s11069-008-9261-3

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe version 4. CGIAR-CSI SRTM 90 m Database. http://srtm.csicgiar.org

  • JNES (2008) Japan Nuclear Energy Safety Organization (JNES), Tsunami Simulation Code “TSUNAMI” Manual, Japan Nuclear Energy Safety Organization (JNES)

  • JSCE (2002) Tsunami assessment method for nuclear power plants in Japan. Japan Society of Civil Engineers

  • Karlsrud K (2009) Evaluation of Tsunami Hazard in Sri Lanka. Tsunami Risk Reduction Measures Phase 2 Coordinating Committee for Geoscience Programmes in East and Southeast Asia & Norwegian Geotechnical Institute http://www.ccop.or.th/download/Final_Tsunami2_Rpt/Evaluation_Sri_Lanka_Tsunami_Hazard.pdf

  • Kayal JR (2008) Microearthquake seismology and seismotectonics of South Asia. Springer, New York

    Google Scholar 

  • Kurian NP, Baba M, Rajith K, Nirupama N, Murty TS (2006) Analysis of the Tsunami of December 26, 2004, on the Kerala Coast of India—Part-I: amplitudes. Mar Geodesy 29:265–270. doi:10.1080/01490410601008861

    Article  Google Scholar 

  • Løvholt F, Bungum H, Harbitz CB, Glimsdal S, Lindholm CD, Pedersen G (2006) Earthquake related tsunami hazard along the western coast of Thailand. Nat Hazards Earth Syst Sci 6:979–997

    Article  Google Scholar 

  • Mansinha L, Smylie DE (1971) The displacement fields of inclined faults. Bull Seismol Soc Am 61(5):1433–1440

    Google Scholar 

  • Murotani S, Satake K, Fujii Y (2013) Scaling relations of seismic moment, rupture area, average slip and asperity size for M ~ 9 subduction zone earthquakes. Geophys Res Lett 40:5070–5074. doi:10.1002/grl.50976

    Article  Google Scholar 

  • NDMA (2010) Development of probabilistic seismic hazard map of India. In: Technical report of the working committee of experts (WCE) National Disaster Management Authority Govt. of India, New Delhi. http://www.ndma.gov.in/images/pdf/Indiapshafinalreport.pdf

  • Neetu S, Suresh I, Shankar R, Nagarajan B, Sharma R, Shenoi SSC, Unnikrishnan AS, Sundar D (2011) Trapped waves of the 27 November 1945 Makran tsunami: observations and numerical modelling. Nat Hazards 2:1–10. doi:10.1007/s11069-011-9854-0

    Google Scholar 

  • NGDC National Geophysical Data Center/World Data Service (NGDC/WDS) (2014) Global Historical Tsunami Database. National Geophysical Data Center, NOAA. doi:10.7289/V5PN93H7. Accessed 10 Oct 2014

  • NOAA (2010) National Oceanic and Atmospheric Administration of USA. NOAA Center for tsunami research. http://nctr.pmel.noaa.gov/sumatra20041226.html

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154

    Google Scholar 

  • Okal EA, Synolakis CE (2008) Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophys J Int 172:995–1015. doi:10.1111/j.1365-246X.2007.03674.x

    Article  Google Scholar 

  • Orman JV, Cochran JR, Weissel JK, Jestin F (1995) Distribution of shortening between the Indian and Australian plates in the central Indian Ocean. Earth Planet Sci Lett 133:35–46

    Article  Google Scholar 

  • Pascucci V, Free MW, Lubkowski ZA (2008) Seismic hazard and seismic design requirements for the Arabian Peninsula region. In: 14th world conference on earthquake engineering Beijing, China

  • Patel VM, Patel HS, Singh AP (2010) Tsunami propagation in Arabian sea and its effect on Porbandar, Gujarat, India. J Eng Res Stud I(II):206–217

    Google Scholar 

  • Patel VM, Dholakia MB, Singh AP (2013) Tsunami risk 3D Visualizations of Okha Coast, Gujarat (India). IJESIT 2(2):130–138

    Google Scholar 

  • Pendse CG (1948) The Mekran earthquake of the 28th November 1945. Sci Notes India Meteorol Dep 10(125):141–146

    Google Scholar 

  • Piatanesi A, Loritto S (2007) Rupture process of the 2004 Sumatra Andaman earthquake from tsunami waveform inversion. Bull Seismol Soc Am 97(1A):208–231

    Article  Google Scholar 

  • Poisson B, Oliveros C, Pedreros R (2011) Is there a best source model of the Sumatra 2004 earthquake for simulating the consecutive tsunami? Geophys J Int 185(3):1365–1378

    Article  Google Scholar 

  • Rabinovich AB, Thomson RE (2007) The 26 December 2004 Sumatra tsunami: analysis of tide gauge data from the world ocean part 1. Indian Ocean and South Africa. Pure appl Geophys 164:261–308

    Article  Google Scholar 

  • Raghukanth TG (2010) Estimation of Seismic hazard parameters for India. Seismol Res Lett 81(2):207–217. doi:10.1785/gssrl.81.2.207

    Article  Google Scholar 

  • Rao RR, Reddy NT, Sriganesh J, Ramana Murthy MV, Murty TS (2011) Tsunami hazard evaluation at selected locations along the South Andhra Coast: numerical modelling and field observations. Mar Geodesy 34(1):29–47

    Article  Google Scholar 

  • Rastogi BK, Jaiswal RK (2006) A catalog of tsunamis in the Indian Ocean. Sci Tsunami Hazards 25(3):128–142

    Google Scholar 

  • Rhie J, Dreger D, Burgmann R, Romanowicz B (2007) Slip of the 2004 Sumatra–Andaman Earthquake from joint inversion of long-period global seismic waveforms and GPS static offsets. Bull Seismol Soc Am 97(1A):S115–S127. doi:10.1785/0120050620

    Article  Google Scholar 

  • Roshan AD, Basu PC (2010) Tsunami hazard assessment of Indian coast. In: Proceedings of IAEA EBP tsunami steering committee meeting (TiPEEZ) 15–16 March 2010 Tokyo Japan International Atomic Energy Agency, Vienna, Austria

  • Roshan AD, Basu PC, Jangid RS (2013) Performance evaluation of some tsunami numerical models for far field propagation of 2011 tsunami. In: 26th international tsunami symposium, METU & IUGG 25–28 September 2013 Gocek, Turkey

  • Sheth A, Sanyal S, Jaiswal A, Gandhi P (2006) Effects of the december 2004 Indian Ocean tsunami on the Indian Mainland. Earthq Spectra 22(S3):S435–S473. doi:10.1193/1.2208562

    Article  Google Scholar 

  • Sindhu B, Suresh I, Unnikrishnan AS, Bhatkar NV, Neetu S, Michael GS (2007) Improved bathymetric datasets for the shallow water regions in the Indian Ocean. J Earth Syst Sci 116(3):261–274

    Article  Google Scholar 

  • Singh et al (2005) (Sumatra Aftershocks Team), Sumatra earthquake research indicates why rupture propagated northward. Eos 86(48):497–502

  • Singh AP, Murty TS, Rastogi BK, Yadav RBS (2012) Earthquake generated tsunami in the Indian Ocean and probable vulnerability assessment for the East Coast of India. Mar Geodesy 35:49–65

    Article  Google Scholar 

  • Srivastava K, Dimri VP, SwaroopaRani V, Krishakumar R, Narain L (2011) Would Makran tsunami skip Mumbai, India? No it would reach 8 minutes later than Ratnagiri. Indian J Geo Mar Sci 40(5):620–623

    Google Scholar 

  • Swaroopa Rani V, Srivastava K, Dimri VP (2011) Tsunami propagation and inundation due to tsunamigenic earthquakes in the Sumatra–Andaman subduction zone: impact at Visakhapatnam. Mar Geodesy 34(1):48–58

    Article  Google Scholar 

  • Tang L, Titov VV, Chamberlin CD, (2009) Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting. J Geophys Res 114(C12):1–22. http://www.agu.org/pubs/crossref/2009/2009JC005476.shtml

  • Titov VV, Gonzalez FI (1997) Implementation and testing of the method of splitting tsunami (MOST) model. NOAA Technical Memorandum ERL PMEL-112, 11 pp. http://www.pmel.noaa.gov/pubs/PDF/tito1927/tito1927.pdf

  • Titov VV, Moore CW, Greenslade DJM, Pattiaratchi C, Badal R, Synolakis CE, Kânoğlu U (2011) A new tool for inundation modeling: Community Modeling Interface for Tsunamis (ComMIT). Pure Appl Geophys 168(11):2121–2131

    Article  Google Scholar 

  • Usha T, Ramana Murthy MV, Reddy NT, Murty TS (2009) Vulnerability assessment of Car Nicobar to tsunami hazard. Sci Tsunami Hazards 28(1):15–34

    Google Scholar 

  • Weigel JK, Anderson RN, Geller CA (1980) Deformation of the Indo-Australian plate. Nature 287:284–291

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans AGU 79(47):579

    Article  Google Scholar 

  • Yalciner AC, Pelinovsky E, Zaytsev A, Kurkin A, Ozer C, Karakus H (2006) NAMI DANCE manual. METU, Civil Engineering Department, Ocean Engineering Research Center, Ankara, Turkey. http://namidance.ce.metu.edu.tr. Accessed 2nd May 2011

  • Yanagisawa K, Imamura F, Sakakiyama T, Annaka T, Takeda T, Shuto N (2007) Tsunami assessment for risk management at nuclear power facilities in Japan. Pure Appl Geophys 164(2):565–576. doi:10.1007/s00024-006-0176-1

    Article  Google Scholar 

Download references

Acknowledgments

Figures and maps were prepared using Generic Mapping Tools software (Wessel and Smith 1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Roshan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshan, A.D., Basu, P.C. & Jangid, R.S. Tsunami hazard assessment of Indian coast. Nat Hazards 82, 733–762 (2016). https://doi.org/10.1007/s11069-016-2216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2216-1

Keywords

Navigation