Skip to main content

Advertisement

Log in

Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Western Ghats, the bold westerly escarpment of India paralleling the west coast, are characterized by different geologic and geomorphic units formed during different episodes of Earth’s history. The majority of these present day landforms evolved in response to the tectonic activity that the Western Ghats witnessed during the Tertiary period. The major structural features together with the geomorphic units have predominant role in the occurrence of cataclysmic landslides which the windward slope of Western Ghats witness during the peak monsoon season. The Kerala and Periyar lineaments, which are the sites of minor earthquakes, pass through the study area. Escarpments and structural hill systems are the vulnerable landforms for landslide occurrence. Due to the predominant role of these tectonic and geomorphic features in the capricious change of landforms, a study was carried out in this hilly terrain based on geomorphology. The study of soil, slope morphometry, relative relief, land use/land cover and hydrogeological conditions together with a multidimensional analysis in a GIS environment resulted in classifying the entire area into different landslide susceptible zones based on Bureau of Indian Standards. Moreover, the area is also divided into three zones based on the terrain conditions and the type of landslide occurrence. The methodology can well fit with any area experiencing the same terrain conditions and can be used to classify an area on the basis of landslide occurrence and geomorphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anbazhagan S, Sajinkumar KS (2011) Geoinformatics in terrain analysis and landslide susceptibility mapping in parts of Western Ghats, India. In: Subramaniam SK, Yang X (eds) Anbazhagan S. CRC Press, Geoinformatics in Applied Geomorphology, pp 291–315

    Google Scholar 

  • Antoniou AA, Lekkas E (2010) Rockfall susceptibility map for Athinios port, Santorini Island, Greece. Geomorphology 118:152–166

    Article  Google Scholar 

  • Apip K, Takara K, Yamashiki Y, Sassa K, Ibrahim AB, Fukuoka H (2010) A distributed hydrological–geotechnical model using satellite-derived rainfall estimates for shallow landslide prediction system at a catchment scale. Landslides 7:237–258

    Article  Google Scholar 

  • Bureau of Indian Standards (1998) In: Indian Standard-Preparation of landslide hazard zonation maps in mountainous terrains-guidelines. IS 14496 (Part 2). New Delhi, p 20

  • Chen SU, Chou HT, Chen SC, Wu CH, Lin BS (2014) Characteristics of rainfall-induced landslides in Miocene formations: a case study of the Shenmu watershed, Central Taiwan. Eng Geol 169:133–146

    Article  Google Scholar 

  • Crosta GB, Frattini R (2003) Distributed modeling of shallow landslides triggered by intense rainfall. Nat Hazards Earth Syst Sci 3:81–93

    Article  Google Scholar 

  • Dai FC, Lee CF (2001) Frequency–volume relation and prediction of rainfall-induced landslides. Eng Geol 59:253–266

    Article  Google Scholar 

  • Dai FC, Lee CF, Wang SJ (2003) Characterization of rainfall-induced landslides. Int J Remote Sens 24(23):4817–4834

    Article  Google Scholar 

  • De Vita P, Napolitano E, Godt J, Baum R (2012) Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma–Vesuvius area of southern Italy. Landslides. doi:10.1007/s10346-012-0348-2

  • Devarajan KM (1990) Geomorphology and morphotectonics of Idukki catchment, Kerala, using remote sensing techniques. PhD Thesis, IIT Bombay, India

  • Fernandez-Hernandez M, Paredes C, Castedo R, Llorente M, de la Vega-Panizo R (2012) Rockfall detachment susceptibility map in El Hierro Island, Canary Islands, Spain. Nat Hazards 64(2):1247–1271

    Article  Google Scholar 

  • Gattinoni P, Scesi L (2013) Landslide hydrogeological susceptibility of Maierato (Vibo Valentia, Southern Italy). Nat Hazards 66:629–648

    Article  Google Scholar 

  • Ghosh S, van Westen CG, Caranza EJM, Jetten VG (2012) Integrating spatial, temporal, and magnitude probabilities for medium-scale landslide risk analysis in Darjeeling Himalayas, India. Landslides 9:371–384

    Article  Google Scholar 

  • Gunnell Y, Fleitout L (2001) The morphotectonic evolution of the Western Ghats. In: Gunnell Y, Radhakrishna BP (eds) Sahyādri: The great escarpment of the Indian subcontinent. Geological Society of India, Bangalore, pp 581–598

    Google Scholar 

  • Hergarten S (2012) Topography-based modeling of large rockfalls and application to hazard assessment. Geophys Res Lett 39. doi:10.1029/2012GL052090

  • Ho JY, Lee KT, Chang TC, Wang ZY, Liao YH (2012) Influence of spatial distribution of soil thickness on shallow landslide prediction. Eng Geol 124:38–46

    Article  Google Scholar 

  • Jayalekshmi K, Nair KM, Kumai H, Santosh M (2004) Late Pleistocene–Holocene Paleoclimatic History of the Southern Kerala Basin, Southwest India. Gondwana Res 7(2):585–594

    Article  Google Scholar 

  • Krishnakumar KN, Prasadarao GSLHV, Gopakumar CS (2009) Rainfall trends in twentieth century over Kerala, India. Atmos Environ 43:1940–1944

    Article  Google Scholar 

  • Kuriakose SL, Devkota S, Rossiter DG, Jetten VG (2009a) Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. Catena. doi:10.1016/j.catena.2009.05.005

  • Kuriakose SL, Sankar G, Muraleedharan C (2009b) History of landslide susceptibility and a chorology of landslide-prone areas in the Western Ghats of Kerala, India. Environ Geol 57:1553–1568

    Article  Google Scholar 

  • Lazzari M, Geraldi E, Lapenna V, Loperte A (2006) Natural hazards vs human impact: an integrated methodological approach in geomorphological risk assessment on the Tursi historical site, Southern Italy. Landslides 3:275–287

    Article  Google Scholar 

  • Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47:411–435

    Article  Google Scholar 

  • Mantovani F, Gracia FJ, de Cosmo PD, Suma A (2010) A new approach to landslide geomorphological mapping using the Open Source software in the Olvera area (Cadiz, Spain). Landslides 7:69–74

    Article  Google Scholar 

  • Mishra DC, Singh AP, Rao MBSV (1989) Idukki earthquake and its tectonic implications. J Geol Soc India 34:147–151

    Google Scholar 

  • Mohan A (1996) The Madurai granulite block. In: Santhosh M, Yoshida M (Eds), The Archean and Proterozoic terrains in Southern India within East Gondwana, vol 3. Gondwana Research Group Memoir. 3, pp 223–242

  • Nair KM, Padmalal D, Kumaran KPN, Sreeja R, Limaye RB, Srinivas R (2010) Late quaternary evolution of Ashtamudi–Sasthamkotta lake systems of Kerala, south west India. J Asian Earth Sci 37(4):361–372

    Article  Google Scholar 

  • Pal I, Al-Tabbaa A (2009) Trends in seasonal precipitation extremes—an indicator of ‘climate change’ in Kerala, India. J Hydrol 367:62–69

    Article  Google Scholar 

  • Pánek T, Hradecký J, Smolková V, Šilhán K (2008) Giant ancient landslide in the Alma water gap (Crimean Mountains, Ukraine): notes to the predisposition, structure, and chronology. Landslides 5:367–378

    Article  Google Scholar 

  • Panickar SV (1995) Landslides around Dehradun and Mussoorie: a geomorphic appraisal. PhD Thesis, IIT Bombay, India

  • Park HJ, Lee JH, Woo LK (2013) Assessment of rainfall-induced shallow landslide susceptibility using a GIS-based probabilistic approach. Eng Geol 161:1–15

    Article  Google Scholar 

  • Ponziani F, Pandolfo C, Stelluti M, Berni N, Brocca L, Moramarco T (2012) Assessment of rainfall thresholds and soil moisture modeling for operational hydrogeological risk prevention in the Umbria region (central Italy). Landslides 9:229–237

    Article  Google Scholar 

  • Praveen MN, Santosh M, Yang QY, Zang ZC, Huang H, Singanenjam S, Sajinkumar KS (2013) Zircon U–Pb geochronology and Hf isotope of felsic volcanics from Attappadi, southern India: implications for Neoarchean convergent margin tectonics. Gondwana Research. doi:10.1016/j.gr.2013.08.004

  • Prost GL (2013) Remote sensing for geoscientists, 3rd edn. CRC Press, New York, p 674

    Book  Google Scholar 

  • Radhakrishna BP (2001) Geomorphic rejuvenation of the Indian Peninsula. In: Gunnell Y, Radhakrishna BP (eds) Sahyādri: The great escarpment of the Indian subcontinent. Geological Society of India, Bangalore, pp 201–211

    Google Scholar 

  • Ramesh MV, Vasudevan N (2012) The deployment of deep-earth sensor probes for landslide detection. Landslides 9:457–474

    Article  Google Scholar 

  • Rao PP, Nair MM, Raju DV (1985) Assessment of the role of remote sensing techniques in monitoring shoreline changes: a case study of the Kerala coast. Int J Remote Sens 6(3–4):549–558

    Google Scholar 

  • Rastogi BK, Chadha RK, Kumar N, Sathyamurthy C, Sarma CSP, Raju IP (1989) Report on the Idukki earthquake of magnitude 4.5 on June 7, 1988 as an example of reactivation of NW–SE wrench fault in Peninsular India. NGRI Technical Report No. ENVIRON 61, 78p

  • Regmi NR, Giardino JR, McDonald EV, Vitek JD (2013) A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides. doi:10.1007/s10346-012-0380-2

  • Sajinkumar KS (2005) Geoinformatics in landslide risk assessment and management in parts of Western Ghats, Central Kerala, South India. Ph.D. Thesis (Unpublished), IIT Bombay

  • Sajinkumar KS, Anbazhagan S, Pradeepkumar AP, Rani VR (2011) Weathering and landslide occurrences in parts of Western Ghats, Kerala. J Geol Soc India 78(3):249–257

    Article  Google Scholar 

  • Sajinkumar KS, Anbazhagan S, Rani VR, Muraleedharan C (2013) A paradigm quantitative approach for regional risk assessment and management in a few landslide prone hamlets along the windward slide of Western Ghats, India. Int J Disaster Risk Reduct. doi:10.1016/j.ijdrr.2013.10.004

  • Sajinkumar KS, Sankar G, Rani VR, Sundarajan P (2014a) Effect of quarrying on the slope stability in Banasuramala: an offshoot valley of Western Ghats, Kerala, India. Environ Earth Sci. doi:10.1007/s12665-014-3143-7

  • Sajinkumar KS, Pradeepkumar AP, Rani VR, Giuseppe Di Capua (2014b) Suppressing geo-facts in landslide-affected areas. Geophysical Research Abstracts, vol. 16, EGU2014-16673. http://meetingorganizer.copernicus.org/EGU2014/EGU2014-16673.pdf

  • Sajinkumar KS, Castedo R, Rani VR, Sundarajan R (2014c) Study of a partially failed landslide and delineation of piping phenomena by vertical electrical sounding (VES) in the Wayanad Plateau, Kerala, India. Natural Hazards. doi: 10.1007/s11069-014-1342-x

  • Soils of Kerala (2005) Soil survey and conservation department, Government of Kerala

  • Soman K (2002) Geology of Kerala. Geological Society of India, Bangalore

  • Sundarajan P, Sajinkumar KS (2012) Detailed site specific study of Kunnamangalam Vayal landslide. Geological Survey of India, unpublished report, Wayanad district

    Google Scholar 

  • Terzaghi K (1950) Mechanism of landslides. In: Paige S (ed) Application of geology to engineering practice. The geological society of America, Berkeley, pp 83–123

    Google Scholar 

  • Thampi PK, Mathai J, Sankar G, Sidharthan S (1998) Debris flow in Western Ghats- A regional evaluation. Final Proc. Tenth Kerala Science Congress, Kozhikode, pp 73–75

    Google Scholar 

  • Thomas MF (1974) Tropical geomorphology: a study of weathering and landform development in warm climates. MacMillan, London

    Google Scholar 

  • Thornbury WD (1990) Principles of geomorphology. Wiley, New York

    Google Scholar 

  • Tu XB, Kwong AKL, Dai FC, Tham LG, Min H (2009) Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides. Eng Geol 105:134–150

    Article  Google Scholar 

  • Valdiya KS (1987) Environmental Geology-Indian context. Tata McGraw Hill, New Delhi

    Google Scholar 

  • Van Asch TWJ, Buma J, Van Beek LPH (1999) A view of some hydrological triggering systems in landslides. Geomorphology 30:25–32

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Wooten RM, Gillon KA, Witt AC, Latham RS, Douglas TJ, Bauer JB, Fuemmeler SJ, Lee LG (2008) Geologic, geomorphic, and meteorological aspects of debris flows triggered by Hurricanes Frances and Ivan during September 2004 in the Southern Appalachian Mountains of Macon County, North Carolina (southeastern USA). Landslides 5:31–44

    Article  Google Scholar 

Download references

Acknowledgments

S.K. acknowledges Council for Scientific and Industrial Research (CSIR), India, for providing funds to carry out this research work. The authors thank the then Head of the Department of Earth Sciences, Indian Institute of Technology Bombay, for providing all the facilities for carrying out the research work. Thanks to Dr. AP Pradeepkumar, Reader (Geology), University of Kerala, for his valuable suggestions. Thanks to anonymous reviewers whose valuable suggestions helped a lot in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Sajinkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajinkumar, K.S., Anbazhagan, S. Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India. Nat Hazards 75, 953–973 (2015). https://doi.org/10.1007/s11069-014-1358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1358-2

Keywords

Navigation