Skip to main content

Advertisement

Log in

Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Adams PN, Inman D, Graham N (2008) Southern California deep-water wave climate: characterization and application to coastal processes. J Coast Res 24(4):1022–1035

    Article  Google Scholar 

  • Adams PN, Inman DL, Lovering JL (2011) Effects of climate change and wave direction on longshore sediment transport patterns in Southern California. Clim Change 109(S1):211–228. doi:10.1007/s10584-011-0317-0

    Article  Google Scholar 

  • Allan JC, Komar PD (2006) Climate controls on US West Coast erosion processes. J Coast Res 22(3):511–529

    Article  Google Scholar 

  • Allan JC, Komar PD, Ruggiero P (2011) Storm surge magnitude and frequency on the central Oregon coast. Proceedings of the solutions to coastal disasters conference 2011, 13 p

  • Barnard PL, Hoover D (2010) A seamless, high-resolution, coastal digital elevation model (DEM) for Southern California. U.S. Geological Survey Data Series 487: 8 p. http://pubs.usgs.gov/ds/487/

  • Barnard PL, O’Reilly B, van Ormondt M, Elias E, Ruggiero P, Erikson LH, Hapke C, Collins BD, Guza RT, Adams PN, Thomas JT (2009) The framework of a coastal hazards model: a tool for predicting the impact of severe storms. U.S. Geological Survey Open-File Report 2009–1073:19 p. http://pubs.usgs.gov/of/2009/1073/

  • Barnard PL, Allan J, Hansen JE, Kaminsky GM, Ruggiero P, Doria A (2011) The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches. Geophys Res Lett 38 (L13604):7

  • Bender MA, Ginis I (2000) Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: effects on hurricane intensity. Mon Weather Rev 128:917–946

    Article  Google Scholar 

  • Bender MA, Ginis I, Tuleya R, Thomas B, Marchok T (2007) The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon Weather Rev 135:3965–3989

    Article  Google Scholar 

  • Bromirski PD, Flick RE, Cayan DR (2003) Storminess variability along the California coast: 1858–2000. J Clim 16(6):982–993

    Article  Google Scholar 

  • Cayan DR, Bromirski PD, Hayhoe K, Tyree M, Dettinger MD, Flick RE (2008) Climate change projections of sea level extremes along the California coast. Clim Change 87(Suppl. 1):S57–S73

    Article  Google Scholar 

  • Chen SS, Price JF, Zhao W, Donelan MA, Walsh EJ (2007) The CBLAST Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull Am Meteorolog Soc 88:311–317

    Article  Google Scholar 

  • Coastal Data Information Program (CDIP) (2013) Scripps Institution of Oceanography, Integrative Oceanography Division, San Diego, http://cdip.ucsd.edu

  • Coastal Engineering Research Center (CERC) (1984) Shore Protection Manual. U.S. Army Corps of Engineers, Coastal Engineering Research Center. U.S. Government Printing Office, Washington

  • Coupled Model Intercomparison Project, Phase 5 (CMIP5) (2011) WCRP Coupled Model Intercomparison Project—Phase 5. Special Issue of the CLIVAR Exchanges Newslett 56 15(2): 52

  • Delft Hydraulics (2007) User manual Delft3D-FLOW. WL/Delft Hydraulics, Delft, p 614

    Google Scholar 

  • Dettinger MD, Ralph FM, Hughes M, Das T, Neiman P, Cox D, Estes G, Reynolds D, Hartman R, Cayan D, Jones L (2012) Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California. Nat Hazards 60:1085–1111. doi:10.1007/s11069-011-9894-5

    Article  Google Scholar 

  • Egbert G, Bennett A, Foreman M (1994) TOPEX/Poseidon tides estimated using a global inverse model. J Geophys Res 99(C12):24821–24852

    Article  Google Scholar 

  • Elias EPL, Hansen JE (2013) Understanding processes controlling sediment transports at the mouth of a high-energetic inlet system (San Francisco Bay, CA). Mar Geol 345:207–220. doi:10.1016/j.margeo.2012.07.003

    Article  Google Scholar 

  • Federal Emergency Management Agency (FEMA) (2007) Coastal Hazards Analysis Modeling Program Version 2.0, User Manual: 50 p

  • Foxgrover AC, Barnard PL (2012) A seamless, high-resolution digital elevation model (DEM) of the North-Central California coast. U.S. Geological Survey Data Series 684:11. http://pubs.usgs.gov/ds/684/

  • Gallien TW, Schubert JE, Sanders BF (2011) Predicting tidal flooding of urbanized embayments: a modeling framework and data requirements. Coast Eng 58:567–577

    Article  Google Scholar 

  • Gallien TW, Barnard PL, van Ormondt M, Foxgrover AC, Sanders BF (2012) A parcel-scale coastal flood forecasting prototype for a Southern California urbanized embayment. J Coast Res 29(3):642–656. doi:10.2112/JCOASTRES-D-12-00114.1

    Google Scholar 

  • Gemmrich J, Thomas B, Bouchard R (2011) Observational changes and trends in northeast Pacific wave records. Geophys Res Lett 38(L22601):5. doi:10.1029/2011GL049518

    Google Scholar 

  • Guza RT, Thornton EB (1981) Wave set-up on a natural beach. J Geophys Res 86(C5):4133–4137

    Article  Google Scholar 

  • Hansen JE (2007) Scientific reticence and sea level rise. Environ Res Lett 2(024002):7. doi:10.1088/1748-9326/2/2/024002

    Google Scholar 

  • Hapke C, Plant N (2010) Predicting coastal cliff erosion using a Bayesian probabilistic model. Mar Geol 278:140–149. doi:10.1016/j.margeo.2010.10.001

    Article  Google Scholar 

  • Hapke CJ, Reid D (2007) The National assessment of shoreline change: Part 4, historical coastal cliff retreat along the California coast. U.S. Geological Survey Open-file Report 2007–1133. http://pubs.usgs.gov/of/2007/1133/

  • Hemer MA, Fan Y, Mori N, Semedo A, Wang XL (2013) Projected changes in wave climate from a multi-model ensemble. Nat Clim Change 3:471–476. doi:10.1038/nclimate1791

    Article  Google Scholar 

  • Hinkel J, Nicholls RJ, Tol RSJ, Wang ZB, Hamilton JM, Boot G, Vafeidis AT, McFadden L, Ganopolski A, Klein RJT (2013) A global analysis of erosion of sandy beaches and sea-level rise: an application of DIVA. Glob Planet Change 111:150–158

    Article  Google Scholar 

  • Komar PD, Inman DL (1970) Longshore sand transport on beaches. J Geophys Res 75(30):5914–5927

    Article  Google Scholar 

  • Lesser GR, Roelvink JA, van Kester JA, Stelling GS (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51:883–915

    Article  Google Scholar 

  • McCall RT, Thiel Van, de Vries JSM, Plant NG, Van Dongeren AR, Roelvink JA, Thompson DM, Reniers AJHM (2010) Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coast Eng 57:668–683. doi:10.1016/j.coastaleng.2010.02.006

    Article  Google Scholar 

  • Menendez M, Mendez FJ, Losada IJ, Graham NE (2008) Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophys Res Lett 35(L22607):6. doi:10.1029/2008GL035394

    Google Scholar 

  • Minor SA, Kellogg KS, Stanley RG, Stone P, Powell II CL, Gurrola LD, Selting AJ, Brandt TR (2002) Preliminary geologic map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California. U.S. Geological Survey Open-file Report 02–136. http://pubs.usgs.gov/of/2002/ofr-02-0136/

  • National Oceanic and Atmospheric Administration (NOAA) (2011) WaveWatch III Model. Center of Operational Products and Services. http://polar.ncep.noaa.gov/waves/wavewatch/wavewatch.html. Accessed 15 Aug 2011

  • National Oceanic and Atmospheric Administration (NOAA) (2013a) National Data Buoy Center. http://www.ndbc.noaa.gov/. Accessed 10 Dec 2013

  • National Oceanic and Atmospheric Administration (NOAA) (2013b) Sea level rise and coastal flooding impacts viewer. Coastal Services Center. http://www.csc.noaa.gov/slr/viewer/#. Accessed 10 Dec 2013

  • National Oceanic and Atmospheric Administration (NOAA) (2013c) Tides & Currents. Center for Operational Products and Services. http://tidesandcurrents.noaa.gov/. Accessed 10 Dec 2013

  • National Research Council (2012) Sea-level rise for the coasts of California, Oregon, and Washington: past, present, and future. Committee on Sea Level Rise in California, Oregon, and Washington. The National Academies Press, Washington, 260 p

  • National Weather Service (NWS) (2012) California’s Top 15 weather events of 1900’s. National Oceanic and Atmospheric Administration. http://www.wrh.noaa.gov/pqr/paststorms/california10.php#1982-83%20El%20Nino%20Storms. Accessed 9 November 2012

  • National Weather Service (NWS) (2013) Climate prediction. National Oceanic and Atmospheric Administration. http://www.nws.noaa.gov/predictions.php Accessed 10 December 2013

  • Nicholls RJ (2004) Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Glob Environ Change 14:69–86. doi:10.1016/j.gloenvcha.2003.10.007

    Article  Google Scholar 

  • O’Reilly W (1993) The southern California wave climate–effects of islands and bathymetry. Shore Beach 61(3):14–19

    Google Scholar 

  • O’Reilly WC, Guza RT (1993) A comparison of spectral wave models in the Southern California Bight. Coast Eng 19(3):263–282

    Article  Google Scholar 

  • O’Reilly WC, Seymour RJ, Guza RT, Castel D (1993) Wave monitoring in the Southern California Bight. Ocean Wave Measurement and Analysis. Proceedings of 2nd International Symposium, pp 849–863

  • Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 331:1340–1343

    Article  Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea level rise. Science 315:368–370. doi:10.1126/science.1135456

    Article  Google Scholar 

  • Roelvink D, Reniers A, Van Dongeren A, van Thiel de Vries J, Lescinski J, McCall R (2008) Modeling hurricane impacts on beaches, dunes, and barrier islands. In Smith JM (ed) Coastal Engineering 2008, Proceedings of the 31st International Conference vol 5, 14 p

  • Roelvink D, Reniers A, Van Dongeren A, van Thiel de Vries J, McCall R, Lescinski J (2009) Modelling storm impacts on beaches, dunes and barrier islands. Coast Eng 56(11–12):1133–1152

    Article  Google Scholar 

  • Ruggiero P (2008) Impacts of climate change on coastal erosion and flood probability in the US Pacific Northwest. Proceedings of Solutions to Coastal Disasters 2008: 12 p

  • Ruggiero P (2013) Is the intensifying wave climate of the U.S. Pacific Northwest increasing flooding and erosion risk faster than sea-level rise? J Port Waterw Eng 139(2):88–97

    Article  Google Scholar 

  • Ruggiero P, Komar PD, Allan JC (2010) Increasing wave heights and extreme-value projections: the wave climate of the U.S., Pacific Northwest. Coast Eng 57:539–552. doi:10.1016/j.coastaleng.2009.12.005

    Article  Google Scholar 

  • Santoso A, McGregor S, Jin F, Cai W, England MH, An S, McPhaden MJ, Guilyardi E (2013) Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504:126–130. doi:10.1038/nature12683

    Article  Google Scholar 

  • Scripps Institution of Oceanography (SIO) (2009) Southern California beach processes study survey archive. http://cdip.ucsd.edu/SCBPS/?nav=data. Accessed 12 Oct 2009

  • Shepard FP (1950) Beach cycles in Southern California. Memo 20, Beach Erosion Board, U.S. Army Corps of Engineers, Washington, 26 p

  • Splinter KD, Palmsten ML (2012) Modeling dune response to an East Coast Low. Mar Geol 329–331:46–57

    Article  Google Scholar 

  • Stockdon H, Holman R, Howd P, Sallenger AH (2006) Empirical parameterization of setup, swash, and runup. Coast Eng 53:573–588

    Article  Google Scholar 

  • Tolman HL (1997) User manual and system documentation of WAVEWATCH-III version 1.15. NOAA/NWS/NCEP/OMB Technical Note 151:97 pp

  • Tolman HL (2009) User manual and system documentation of WAVEWATCH III version 3.14. NOAA/NWS/NCEP/MMAB Technical Note 276:194 p

  • Van Dongeren A, Bolle A, Vousdoukas I, Plomaritis T, Eftimova P, Williams J, Armaroli C, Idier D, Van Geer P, Van Thiel de Vries J, Haerens P, Taborda R, Benavente J, Trifonaova E, Ciavola P, Balouin Y, Roelvink D (2009) MICORE: Dune erosion and overwash model validation with data from nine European field sites. Proceedings of Coastal Dynamics 2009, Paper No. 82

  • Verboom GK, Slob A (1984) Weakly-reflective boundary conditions for two-dimensional water flow problems. Adv Water Resour 7(4):192–197

    Article  Google Scholar 

  • Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106(51):21527–21532

    Article  Google Scholar 

  • Warner JC, Armstrong B, He R, Zambon JB (2010) Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. Ocean Model 35(3):230–244

    Article  Google Scholar 

  • Yates ML, Guza RT, O’Reilly WC, Seymour RJ (2008) Seasonal persistence of a small Southern California beach fill. Coast Eng 56:559–564. doi:10.1016/j.coastaleng.2008.11.004i

    Article  Google Scholar 

  • Young IR, Zieger S, Babanin AV (2011) Global trends in wind speed and wave height. Science 332:451–455

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the US Geological Survey, Deltares, NOAA, and the National Park Service for funding this research. Early peer reviews of CoSMoS were provided by Jim Bailard, Rebecca Beavers, Carolynn Box, Kate Dallas, Lesley Ewing, Doug George, Bob Guza, Dan Hanes, Jeff Hansen, Dan Hoover, Jeff List, Bill O’Reilly, Dano Roelvink, Julie Thomas, and Dirk-Jan Walstra. PNA thanks Jessica Lovering for assistance with LST gradient calculations. Torrey Pines beach survey data and concurrent nearshore wave predictions were provided by Scripps Institution of Oceanography and were funded by the California Department of Parks and Recreation, Division of Boating and Waterways, and the US Army Corps of Engineers. The most up-to-date information on CoSMoS, including study areas, methods, model results, and publications, can be found at http://walrus.wr.usgs.gov/coastal_processes/cosmos/index.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. Barnard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnard, P.L., van Ormondt, M., Erikson, L.H. et al. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts. Nat Hazards 74, 1095–1125 (2014). https://doi.org/10.1007/s11069-014-1236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1236-y

Keywords

Navigation