Skip to main content
Log in

Applicability of different ground-motion prediction models for northern Iran

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A total of 163 free-field acceleration time histories recorded at epicentral distances of up to 200 km from 32 earthquakes with moment magnitudes ranging from M w 4.9 to 7.4 have been used to investigate the predictive capabilities of the local, regional, and next generation attenuation (NGA) ground-motion prediction equations and determine their applicability for northern Iran. Two different statistical approaches, namely the likelihood method (LH) of Scherbaum et al. (Bull Seismol Soc Am 94:341–348, 2004) and the average log-likelihood method (LLH) of Scherbaum et al. (Bull Seismol Soc Am 99:3234–3247, 2009), have been applied for evaluation of these models. The best-fitting models (considering both the LH and LLH results) over the entire frequency range of interest are those of Ghasemi et al. (Seismol 13:499–515, 2009a) and Soghrat et al. (Geophys J Int 188:645–679, 2012) among the local models, Abrahamson and Silva (Earthq Spectra 24:67–97, 2008) and Chiou and Youngs (Earthq Spectra 24:173–215, 2008) among the NGA models, and finally Akkar and Bommer (Seism Res Lett 81:195–206, 2010) among the regional models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbassi A, Nasrabadi A, Tatar M, Yaminifard F, Abbassi M, Hatzfeld D, Priestley K (2010) Crustal velocity structure in the southern edge of the Central Alborz (Iran). J Geodyn 49:68–78

    Article  Google Scholar 

  • Abrahamson N, Silva W (2008) Summary of the Abrahamson & Silva NGA ground motion relations. Earthq Spectra 24:67–97

    Article  Google Scholar 

  • Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean Region and the Middle East. Seism Res Lett 81:195–206

    Article  Google Scholar 

  • Akkar S, Çağnan Z (2010) A local ground-motion predictive model for Turkey, and its comparison with other regional and global ground-motion models. Bull Seismol Soc Am 100:2978–2995

    Article  Google Scholar 

  • Ansari A, Noorzad A, Zafarani H, Vahidifard H (2010) Correction of highly noisy strong motion records using a modified wavelet de-noising method. Soil Dyn Earthq Eng 30:1168–1181

    Article  Google Scholar 

  • Ashtari M, Hatzfeld D, Kamalian N (2005) Microseismicity in the region of Tehran. Tectonophysics 395:193–208

    Article  Google Scholar 

  • Atkinson G, Morrison M (2009) Regional variability in ground motion amplitudes along the west coast of North America. Bull Seismol Soc Am 99:2393–2409

    Article  Google Scholar 

  • Beauval C, Tasan H, Laurendeau A, Delavaud E, Cotton F, Guéguen Ph, Kuehn N (2012) On the testing of ground-motion prediction equations against small magnitude data. Bull Seism Soc Am 102:1994–2007

    Article  Google Scholar 

  • Berberian M (1976) Contribution to the seismotectonics of Iran (Part 2). Geological Survey of Iran. Report 39, 518 pp

  • Berberian M, Qorashi M, Jackson JA, Priestley K, Wallace T (1992) The Rudbar-Tarom earthquake of 20 June 1990 in NW Persia: preliminary field and seismological observations, and its tectonic significance. Bull Seism Soc Am 82:1726–1755

    Google Scholar 

  • Beyer K, Bommer JJ (2006) Relationships between median values and between aleatory variabilities for different definitions of the horizontal component of motion. Bull Seism Soc Am 96:1512–1522

    Article  Google Scholar 

  • Bommer JJ, Scherbaum F (2008) The use and misuse of logic-trees in probabilistic seismic hazard analysis. Earthq Spectra 24:997–1009

    Article  Google Scholar 

  • Bommer JJ, Douglas J, Scherbaum F, Cotton F, Bungum H, Fäh D (2010) On the selection of ground-motion prediction equations for seismic hazard analysis. Seism Res Lett 81:783–793

    Article  Google Scholar 

  • Boore DM, Atkinson G (2008) Ground motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq Spectra 24:99–138

    Article  Google Scholar 

  • Boore DM, Watson-Lamprey J, Abrahamson N (2006) GMRotD and GMRotl: orientation independent measures of ground motion. Bull Seismol Soc Am 96:1502–1511

    Article  Google Scholar 

  • Budnitz RJ, Apostolakis G, Boore DM, Cluff LS, Coppersmith K, Cornell CA Morris BJ (1997) Recommendations for probabilistic seismic hazard analysis. In: Guidance on uncertainty and use of experts. Lawrence Livermore National Laboratory, vol 2

  • Buiding and Housing Research Center (BHRC) Available from http://www.bhrc.ac.ir/portal/. Accessed May 2013

  • Campbell KW (1997) Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seism Res Lett 68:154–179

    Article  Google Scholar 

  • Campbell K, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5%-damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthq Spectra 24:139–171

    Article  Google Scholar 

  • Campos J, Madariaga R, Nabelek J, Bukchin BG, Deschamps A (1994) Faulting process of the 1990 June 20 Iran earthquake from broad-band records. Geophys J Int 118:31–46

    Article  Google Scholar 

  • Chandler AM, Lam NTK, Tsang HH (2005) Shear wave velocity modelling in crustal rock for seismic hazard analysis. Soil Dyn Earthq Eng 25:167–185

    Article  Google Scholar 

  • Chandra VJ, McWhorten G, Nowroozi A (1979) Attenuation of intensities in Iran. Bull Seismol Soc Am 69:237–250

    Google Scholar 

  • Chiou BS, Youngs RR (2008) An NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 24:173–215

    Article  Google Scholar 

  • Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target applications: applications to Central Europe and rock sites. J Seismol 10:137–156

    Article  Google Scholar 

  • Delavaud E, Scherbaum F, Kuehn N, Riggelsen C (2009) Information-theoretic selection of ground-motion prediction equations for seismic hazard analysis: an applicability study using Californian data. Bull Seismol Soc Am 99:3248–3263

    Article  Google Scholar 

  • Delavaud E, Scherbaum F, Kuehn N, Allen T (2012) Testing the global applicability of ground-motion prediction equations for active shallow crustal regions. Bull Seismol Soc Am 102:707–721

    Article  Google Scholar 

  • Douglas J (2004a) An investigation of analysis of variance as a tool for exploring regional differences in strong ground motions. J Seismol 8:485–496

    Article  Google Scholar 

  • Douglas J (2004b) Use of analysis of variance for the investigation of regional dependence of strong ground motions. In: 13 World conference on earthquake engineering, Vancouver, BC, Canada, Paper No. 29

  • Douglas J (2011) Ground-motion prediction equations 1964–2010, Final Rept. RP-59356-FR, Bureau de Recherches Géologiques et Minières (BRGM), Orléans, France, 444 pp

  • Drouet S, Scherbaum F, Cotton F, Souriau A (2007) Selection and ranking of ground motion models for seismic hazard analysis in the Pyrenees. J Seismol 11:87–100

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall/CRC, New York

    Book  Google Scholar 

  • Engdahl ER, Jackson JA, Myers SC, Bergman EA, Priestley K (2006) Relocation and assessment of seismicity in the Iran region. Geophys J Int 167:761–778

    Article  Google Scholar 

  • Fakhimnia ME, Zafarani H, Shams Rad Sh (2013) Estimation of site effects in the Iranian plateau using the Quarter-wavelength method. In 7th International conference on case histories in geothecnical engineering, April 29–May 4, Chicago, USA

  • Ghasemi H, Zare M, Fukushima Y, Koketsu K (2009a) An empirical spectral ground-motion model for Iran. J Seismol 13:499–515

    Article  Google Scholar 

  • Ghasemi H, Zare M, Fukushima Y, Sinaeian F (2009b) Applying empirical methods in site classification, using response spectral ratio (H/V): a case study on Iranian strong motion network (ISMN). Soil Dyn Earthq Eng 29:121–132

    Article  Google Scholar 

  • Harvard Seismology (2011) Centroid moment tensor (CMT) catalog search. www.seismology.harvard.edu/. Accessed May 2013

  • Hintersberger E, Scherbaum F, Hainzl S (2007) Update of likelihood-based ground-motion model selection for seismic hazard analysis in western central Europe. Bull Earthq Eng 5:1–16

    Article  Google Scholar 

  • Horasan G, Boztepe-Güney A (2004) S-wave attenuation in the Sea of Marmara, Turkey. Phys Earth Planet Inter 142:215–224

    Article  Google Scholar 

  • Idriss IM (2008) An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthq Spectra 24:217–242

    Article  Google Scholar 

  • Iranian National Broadband Seismic Network, IIEES; http://www.iiees.ac.ir/english/index.php?option=com_content&view=category&layout=blog&id=49&Itemid=95, Accessed May 2013

  • Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the South Caspian Basin. Geophys J Int 148:214–245

    Google Scholar 

  • Kaklamanos J, Baise LG (2011) Model validations and comparisons of the next generation attenuation of ground motions (NGA-West) project. Bull Seismol Soc Am 101:160–175

    Article  Google Scholar 

  • Kaklamanos J, Baise LG, Boore DM (2011) Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthq Spectra 27:1219–1235

    Article  Google Scholar 

  • Kale Ö, Akkar S (2013) A new procedure for selecting and ranking ground-motion prediction equations (GMPEs): the Euclidean-distance based ranking (EDR) method. Bull Seismol Soc Am 103:1069–1084

    Article  Google Scholar 

  • Kalkan E, Gülkan P (2004) Site-dependent spectra derived from ground motion records in Turkey. Earthq Spectra 20:1111–1138

    Article  Google Scholar 

  • Lee VW, Trifunac MD (2010) Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification? Soil Dyn Earthq Eng 30:1250–1258

    Article  Google Scholar 

  • McGuire RK (1978) Frisk: computer program for seismic risk analysis using faults as earthquake sources. United States Department of the Interior, Geological Survey, Open-File Report, pp 78–107

  • Mirzaei N, Gao M, Chen YT (1998) Seismic source regionalization for seismic zoning of Iran: major seismotectonic Provinces. J Earthq Predict Res 7:465–495

    Google Scholar 

  • Montgomery CD, Runger CG (2003) Applied statistics and probability for engineers. John Wiley & Sons, Inc., New York

  • Moradi AS, Hatzfeld D, Tatar M (2011) Microseismicity and seismotectonics of the North Tabriz fault (Iran). Tectonophysics 506:22–30

    Article  Google Scholar 

  • Mousavi M, Ansari A, Zafarani H, Azarbakht A (2012) Selection of ground motion prediction models for seismic hazard analysis in the Zagros region. Iran. J Earthq Eng 16:1184–1207

    Article  Google Scholar 

  • Mousavi M, Zafarani H, Rahpeyma S, Azarbakht A (2013) Test of goodness of the NGA ground motion equations to predict the strong-motions of the 2012 Ahar–Varzaghan dual earthquakes in north-west of Iran. Bull Seismol Soc Am (Under review)

  • Musson RMW (2009) Ground motion and probabilistic hazard. Bull Earthq Eng 7:575–589

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: part I, a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Nowroozi AA (1976) Seismotectonic provinces of Iran. Bull Seismol Soc Am 66:1249–1276

    Google Scholar 

  • Power M, Chiou B, Abrahamson N, Bozorgnia Y, Shantz T, Roblee C (2008) An overview of the NGA Project. Earthq Spectra 24:3–21

    Article  Google Scholar 

  • Priestley K, Baker C, Jackson J (1994) Implications of earthquake focal mechanism data for the active tectonics of the South Caspian Basin and surrounding regions. Geophys J Int 118:111–141

    Article  Google Scholar 

  • Radjaee A, Rham D, Mokhtari M, Tatar M, Priestley K, Hatzfeld D (2010) Variation of Moho depth in the central part of the Alborz Mountains, northern Iran. Geophys J Int 181:173–184

    Article  Google Scholar 

  • Scasserra G, Stewart JP, Bazzurro P, Lanzo G, Mollaioli F (2009) A comparison of NGA ground-motion prediction equations to Italian data. Bull Seismol Soc Am 99:2961–2978

    Article  Google Scholar 

  • Scherbaum F, Cotton F, Smit P (2004) On the use of response spectral-reference data for the selection of ground-motion models for seismic hazard analysis: the case of rock motion. Bull Seismol Soc Am 94:341–348

    Article  Google Scholar 

  • Scherbaum F, Delavaud E, Riggelsen C (2009) Model selection in seismic hazard analysis: an information-theoretic perspective. Bull Seismol Soc Am 99:3234–3247

    Article  Google Scholar 

  • Soghrat MR, Khaji N, Zafarani H (2012) Simulation of strong ground motion in northern Iran using the specific barrier model. Geophys J Int 188:645–679

    Article  Google Scholar 

  • Sokolov VY, Loh CH, Wen KL (2000) Empirical study of sediment-filled basin response: the case of Taipei City. Earthq Spectra 16:681–707

    Article  Google Scholar 

  • Stafford PJ, Strasser FO, Bommer JJ (2008) An evaluation of the applicability of the NGA models to ground-motion prediction in the Euro-Mediterranean region. Bull Earthq Eng 6:149–177

    Article  Google Scholar 

  • Takin M (1972) Iranian geology and continental drift in the Middle East. Nature 235:147–150

    Article  Google Scholar 

  • Tatar M, Javan G, Farahbod A, Paul A, Hatzfeld D (2004) Aftershock seismicity of the Avaj earthquake. In Proceedings of EGU meeting, Nice, France

  • Tatar M, Jackson J, Hatzfeld D, Bergman E (2007) The 28May 2004 Baladeh earthquake (Mw 6.2) in the Alborz, Iran: implications for the geology of the South Caspian Basin margin and for the seismic hazard of Tehran. Geophys J Int 170:249–261

    Article  Google Scholar 

  • Toro GR, Abrahamson NA, Schneider JF (1997) Model of strong ground motions from earthquakes in central and eastern North America: best estimates and uncertainties. Seism Res Lett 68:41–57

    Article  Google Scholar 

  • Trifunac MD, Lee VW (1973) Routine computer processing of strong motion accelerograms. Report EERL 73-03, California. Institute of Technology, Pasadena

  • Walker R, Bergman E, Jackson J, Ghorashi M, Talebian M (2005) The 22 June 2002 Changureh (Avaj) earthquake in Qazvin province, NW Iran: epicentral relocation, source parameters, surface deformation and geomorphology. Geophys J Int 160:707–720

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Zafarani H, Hassani B (2013) Site response and source spectra of S-waves in the Zagros region, Iran. J Seismol 17:645–666

    Article  Google Scholar 

  • Zafarani H, Soghrat M (2012) Simulation of ground motion in the Zagros region. Iran using the specific barrier model and stochastic method. Bull Seism Soc Am 102:2031–2045

    Article  Google Scholar 

  • Zafarani H, Mousavi M, Noorzad A, Ansari A (2008) Calibration of the specific barrier model to Iranian plateau earthquakes and development of physically based attenuation relationships for Iran. Soil Dyn Earthq Eng 28:550–576

    Article  Google Scholar 

  • Zafarani H, Hassani B, Ansari A (2012) Estimation of earthquake parameters in the Alborz seismic zone, Iran using generalized inversion method. Soil Dyn Earthq Eng 42:197–218

    Article  Google Scholar 

  • Zare M, Bard PY, Ghafory-Ashtiany M (1999) Site characterizations for the Iranian strong motion network. Soil Dyn Earthq Eng 18:101–123

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Building and Housing Research Centre of Iran for providing them with the accelerograms and shear-wave velocities used in the current study. This study was supported by the International Institute of Earthquake Engineering and Seismology (IIEES) funds, Project G-05-92: “Seismicity and Seismic Hazard Studies for an International Hotel in Tehran, Iran” This financial support is gratefully acknowledged. Finally, we are very grateful to two anonymous reviewers for their insightful and constructive comments, which significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zafarani.

Appendix

Appendix

See Table 7.

Table 7 The records that is used in this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zafarani, H., Mousavi, M. Applicability of different ground-motion prediction models for northern Iran. Nat Hazards 73, 1199–1228 (2014). https://doi.org/10.1007/s11069-014-1151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1151-2

Keywords

Navigation