Skip to main content

Advertisement

Log in

Changes in North Sea storm surge conditions for four transient future climate realizations

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Storm surges in the North Sea are one of the threats for coastal infrastructure and human safety. Under an anthropogenic climate change, the threat of extreme storm surges may be enlarged due to changes in the wind climate. Possible future storm surge climates based on transient simulations (1961–2100) are investigated with a hydrodynamical model for the North Sea. The climate change scenarios are based on regionalized meteorological conditions with the regional climate model CCLM which is forced by AR4 climate simulations with the general circulation model ECHAM5/MPIOM under two IPCC emission scenarios (SRES A1B and B1) and two initial conditions. Possible sea level rise in the North Sea is not taken into account. The analysis of future wind-induced changes of the water levels is focused on extreme values. Special emphasis is given to the southeastern North Sea (German Bight). Comparing the 30-year averages of the annual 99 percentiles of the wind-induced water levels between the four climate realizations and the respective control climates, a small tendency toward an increase is inferred for all climate change realizations toward the end of the twenty-first century. Concerning the German Bight, the climate change signals are higher for the North Frisian coastal areas than for the East Frisian ones. This is consistent with an increase in frequency of strong westerly winds. Considering the whole time series (1961–2100) for selected areas, this tendency is superimposed with strong decadal fluctuations. It is found that uncertainties are related not only to the used models and emission scenarios but also to the initial conditions pointing to the internal natural variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, et al (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95 doi:10.1007/s10,584-006-9226-z

    Google Scholar 

  • Brown JM, Wolf J, Souza AJ (2010) Surge modelling in the eastern irish sea: present and future storm impact. Ocean Dyn 60:227–236. doi:10.1007/s10,236-009-0248-8

    Google Scholar 

  • Brown JM, Souza AJ, Wolf J (2011) Past to future extreme events in Liverpool Bay: model projections from 1960-2100. Clim Change. doi:10.1007/s10,584-011-0145-2

  • Casulli V, Cattani E (1994) Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow. Comput Math Appl 27(4):99–112

    Article  Google Scholar 

  • Debernard JB, Røed LP (2008) Future wind, wave and storm surge climate in the Northern Seas: a revisit. Tellus 60:427–438. doi:10.1111/j.1600-0870.2008.00,312.x

    Article  Google Scholar 

  • Debernard JB, Sætra Ø, Røed LP (2002) Future wind, wave and storm surge climate in the Northern Seas. Climate Res 23:39–49

    Article  Google Scholar 

  • Hollweg H, Böhm U, Fast I, Hennemuth B, Keuler K, Keup-Thiel E, Lautenschlager M, Legutke S, Radtke K, Rockel B, Schubert M, Will A, Woldt M, Wunram C (2008) Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. Technical report 3, Support for Climate- and Earth System Research at the Max Planck Institute for Meteorology, ISSN 1619–2257

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 881 pp

  • Howard T, Lowe J, Horsburgh K (2010) Interpreting century-scale changes in southern North Sea storm surge climate derived from coupled model simulations. J Climate 23:6234–6247. doi:10.1175/2010JCLI3520.1

    Article  Google Scholar 

  • Kapitza H (2008) Mops: a morphodynamical prediction system on cluster computers. In: Laginha JM, Palma M, Amestoy PR, Dayde M, Mattoso M, Lopez J (eds) High performance computing for computational science-VECPAR 2008, Lecture Notes in Computer Science, Springer, pp 63–68

  • Kapitza H, Eppel DP (2000) Simulating morphodynamical processes on a parallel system. In: Spaulding ML, Butler HL (eds) Estuarine and coastal modeling. American Society of Civil Engineers, New York, pp 1182–1191

    Google Scholar 

  • Lionello P, Nizzero A, Elvini E (2003) A procedure for estimating wind waves and storm-surge climate scenarios in a regional basin: the Adriatic Sea case. Climate Res 23:217–231

    Article  Google Scholar 

  • Lowe JA, Gregory JM (2005) The effects of climate change on storm surges around the United Kingdom. Phil Trans Roy Soc A 363:1313–1328

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415

    Article  Google Scholar 

  • Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Special Report on Emissions Scenarios. A Special Report of Working Group 3 of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 599 pp

  • Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharis S (2007) Changes in the storm track and cyclone activity in the three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29:195–210. doi:10.1007/s00,382-007-0230-4

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (eds) (2008) Special issue regional climate modeling with COSMO-CLM (CCLM), vol 17. Met. Zeitschrift

  • Röckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model echam5. Part i: model description. Mpi-rep 349, Max Planck Institute for Meteorology

  • Sterl A, van den Brink H, de Vries H, Haarsma R, van Meijgaard E (2009) An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate. Ocean Sci 5:369–378

    Article  Google Scholar 

  • Weidemann H (2009) Statistisch regionalisierte Sturmflutszenarien für Cuxhaven. Diploma Thesis, Christian-Albrechts-Universität zu Kiel, 99 pages

  • Weisse R, Pluess A (2006) Storm-related sea level variations along the north sea coast as simulated by a high-resolution model 1958–2002. Ocean Dyn 26:16–25

    Article  Google Scholar 

  • Weisse R, von Storch H, Callies U, Chrastansky A, Feser F, Grabemann I, Günther H, Plüss A, Stoye T, Tellkamp J, Winterfeldt J, Woth K (2009) Regional meteorological-marine reanalysis and climate change projections. Results for northern Europe and potential for coastal and offshore applications. Bull Am Met Soc 90(6):849–860. doi:10.1175/2008BAMS2713.1

    Google Scholar 

  • Weisse R, von Storch H, Niemeyer HD, Knaack H (2011) Changing north sea storm surge climate: an increasing hazard? Ocean Coast Manage. doi:10.1016/j.ocecoaman.2011.09.005

  • Woth K (2005) North Sea storm surge statistics based on projections in a warmer climate: How important are the driving GCM and the chosen emission scenario? Geophys Res Lett 32: L22,708 doi:10.1029/2005GL023,762

  • Woth K, Weisse R, von Storch H (2006) Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models. Ocean Dyn 56(1):3–15. doi:10.1007/s10,236-005-0024-3

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to H. Kapitza and E.M.I. Meyer for assistance with the TRIM-NP model and to Ms. Gardeike for assistance with the graphics. The investigation was partly supported in the context of the joint projects A-KÜST in KLIFF (Förderkennzeichen VWZN2455, Az. 99-22/07) and KLIMZUG-NORD (Förderkennzeichen 01LR0805I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Groll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaslikova, L., Grabemann, I. & Groll, N. Changes in North Sea storm surge conditions for four transient future climate realizations. Nat Hazards 66, 1501–1518 (2013). https://doi.org/10.1007/s11069-012-0279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0279-1

Keywords

Navigation