Skip to main content
Log in

Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone

  • ORIGINAL PAPER
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

To explore the local tsunami hazard from the Cascadia subduction zone we (1) evaluate geologically reasonable variability of the earthquake rupture process, (2) specify 25 deterministic earthquake sources, and (3) use resulting vertical coseismic deformations for simulation of tsunami inundation at Cannon Beach, Oregon. Maximum runup was 9–30 m (NAVD88) from earthquakes with slip of ~8–38 m and M w ~8.3–9.4. Minimum subduction zone slip consistent with three tsunami deposits was 14–15 m. By assigning variable weights to the source scenarios using a logic tree, we derived percentile inundation lines that express the confidence level (percentage) that a Cascadia tsunami will not exceed the line. Ninety-nine percent of Cascadia tsunami variation is covered by runup ≤30 m and 90% ≤16 m with a “preferred” (highest weight) value of ~10 m. A hypothetical maximum-considered distant tsunami had runup of ~11 m, while the historical maximum was ~6.5 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Abbreviations

DOGAMI:

Oregon Department of Geology and Mineral Industries

TPSW:

Tsunami Pilot Study Working Group

CSZ:

Cascadia subduction zone

MHHW:

Mean higher high water

References

  • Adam J, Klaeschen D, Kukowski N, Flueh E (2004) Upward delamination of Cascadia Basin sediment infill with landward frontal accretion thrusting caused by rapid glacial age material flux. Tectonics 23:TC3009

    Article  Google Scholar 

  • Adams J (1990) Paleoseismicity of the Cascadia subduction zone: evidence from turbidites off the Oregon-Washington margin. Tectonics 9:569–583

    Article  Google Scholar 

  • Allan JC, Priest GR (2001) Evaluation of coastal erosion hazard zones along the dune and bluff backed shorelines in Tillamook County, Oregon, Cascade Head to Cape Falcon, Preliminary Technical Report to Tillamook County. Oregon Department of Geology Mineral Industries Open-File Report O-01-03

  • Ammon CJ, Ji C, Thio H-K, Robinson D, Ni S, Hjorleifsdottir V, Kanamori H, Lay T, Das S, Helmberger D, Ichinose G, Polet J, Wald D (2005) Rupture process of the 2004 Sumatra–Andaman Earthquake. Science 308:1133–1139

    Article  Google Scholar 

  • Atwater BF, Nelson AR, Clague JJ, Carver GA, Yamaguchi DK, Bobrowsky PT, Bourgeois J, Darienzo ME, Grant WC, Hemphill-Haley E, Kelsey HM, Jacoby GC, Nishenko SP, Palmer SP, Peterson CD, Reinhart MA (1995) Summary of coastal geologic evidence for past great earthquakes at the Cascadia subduction zone. Earthq Spectra 11(1):1–18

    Article  Google Scholar 

  • Atwater BF, Tuttle MP, Schweig ES, Rubin CM, Yamaguchi DK, Hemphill-Haley E (2004) Earthquake recurrence inferred from paleoseismology. In: Gillespie AR, Porter SC, Atwater BF (eds) The Quaternary period in the United States. Dev Quat Sci 1:331–348

  • Atwater BF, Musumi-Rokkaku S, Satake K, Tsuji Y, Ueda K, Yamaguchi DK (2005) The orphan tsunami of 1700—Japanese clues to a parent earthquake in North America. US Geological Survey Professional Paper 1707

  • Barrientos SE, Ward SN (1990) The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophys J Int 103:589–598

    Article  Google Scholar 

  • Burgette R, Weldon RJ, Schmidt D (2007) A more accurate vertical velocity field for coastal Oregon reveals variations in extent of locking on the Cascadia subduction zone. Eos Trans Am Geophys Union, vol 88 (G52A-01)

  • Burgette R, Weldon RJ, Schmidt D (2009) Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone. J Geophys Res 114:B01408. doi:10.1029/2008JB005679

    Article  Google Scholar 

  • Chlieh M, Avouac J-P, Hjorleifsdottir V, Song T-RA, Ji C, Sieh K, Sladen A, Hebert H, Prawirodirdjo L, Bock Y, Galetzka J (2007) Coseismic slip and afterslip of the great (Mw 9.15) Sumatra–Andaman earthquake of 2004. Bull Seismol Soc Am 97(1):S152–S173

    Article  Google Scholar 

  • Cummins PR, Hori T, Kaneda Y (2001) Splay fault and megathrust earthquake slip in the Nankai Trough. Earth Planets Space 53(4):243–248

    Google Scholar 

  • Dragert H, Hyndman RD (1995) Continuous GPS monitoring of elastic strain in the northern Cascadia subduction zone. Geophys Res Lett 22:755–758

    Article  Google Scholar 

  • Fisher D, Mosher D, Austin JA, Gulick SPS, Masterlark T, Moran K (2007) Active deformation across the Sumatran forearc over the December 2004 Mw 9.2 rupture. Geology 35:99–102

    Article  Google Scholar 

  • Flück P, Hyndman RD, Wang K (1997) 3-D dislocation model for great earthquakes of the Cascadia subduction zone. J Geophys Res 102:20539–20550

    Article  Google Scholar 

  • Freund LB, Barnett DM (1976) A two-dimensional analysis of surface deformation due to dip-slip faulting. Bull Seismol Soc Am 66:667–675

    Google Scholar 

  • Global Centroid Moment Tensor Database (2007) http://www.globalcmt.org/CMTsearch.html. Accessed 2 April 2007

  • Goldfinger C (1994) Active deformation of the Cascadia forearc: implications for great earthquake potential in Oregon and Washington. Dissertation thesis, Oregon State University, Corvallis, OR

  • Goldfinger C, McNeill LC (2006) Sumatra and Cascadia: parallels explored. Eos Trans Am Geophys Union 87:52

    Google Scholar 

  • Goldfinger C, Mackay ME, Moore GF, Kulm LD, Yeats RS, Appelgate B (1992) Transverse structural trends along the Oregon convergent margin: implications for Cascadia earthquake potential and crustal rotations. Geology 20(2):141–144

    Article  Google Scholar 

  • Goldfinger C, Kulm LD, Yeats RS, Hummon C, Huftile GJ, Niem AR, Fox CG, McNeill LC (1996) Oblique strike-slip faulting of the Cascadia submarine forearc: the Daisy Bank fault zone off central Oregon. In: Bebout GE, Scholl D, Kirby S, Platt JP (eds) Subduction top to bottom. Geophys Monogr 96:65–74

  • Goldfinger C, Kulm LD, Yeats RS, McNeill LC, Hummon C (1997) Oblique strike-slip faulting of the central Cascadia submarine forearc. J Geophys Res 102:8217–8243

    Article  Google Scholar 

  • Goldfinger C, Nelson CH et al (2003a) Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and northern San Andreas fault systems. Annali Geofisica 46(5):1169–1194

    Google Scholar 

  • Goldfinger C, Nelson CH et al (2003b) Holocene earthquake records from the Cascadia subduction zone and northern San Andreas Fault based on precise dating of offshore turbidites. Ann Rev Earth Planet Sci 31:555–577

    Article  Google Scholar 

  • Goldfinger C, Nelson CH, Morey-Ross A, Johnson JE, Baptista A, Zhang J, Wang K, Witter R, Priest G (2007) Interplay of structure and sediment supply may influence subduction zone rupture patches and propagation. Eos Trans Am Geophys Union, Fall Meet Suppl vol 88 (T52A-07)

  • Goldfinger C, Grijalva K, Bürgmann R, Morey A, Johnson JE, Nelson CH, Gutiérrez-Pastor J, Ericsson A, Karabanov E, Chaytor JD, Patton J, Gràcia E (2008) Late Holocene rupture of the northern San Andreas Fault and possible stress linkage to the Cascadia subduction zone. Bull Seismol Soc Am 98(2):861–889

    Article  Google Scholar 

  • Goldfinger C, Nelson CH, Morey A, Johnson JE, Gutierrez-Pastor J, Eriksson AT, Karabanov E, Patton J, Gracia E, Enkin R, Dallimore A, Dunhill G, Vallier T, The Shipboard Scientific Parties (2009) Turbidite event history: methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. US Geological Survey Professional Paper 1661-F

  • Hebenstreit GT, Murty TS (1989) Tsunami amplitudes from local earthquakes in the Pacific Northwest region of North America, part 1—the outer coast. Mar Geodesy 13:101–146

    Article  Google Scholar 

  • Hyndman RD, Wang K (1995) The rupture zone of Cascadia great earthquakes from current deformation and the thermal regime. J Geophys Res 100:22133–22154

    Article  Google Scholar 

  • Hyndman RD, Leonard LJ, Currie CA (2005) Test of models for the Cascadia great earthquake rupture area using coastal subsidence estimates for the 1700 earthquake. Final Report, US Geological Survey NEHRP External Grant Award 04HQGR0088

  • Johnson J, Satake K, Holdahl S, Sauber J (1996) The 1964 Prince William Sound earthquake: joint inversion of tsunami and geodetic data. J Geophys Res 101(B1):523–532

    Article  Google Scholar 

  • Kelsey HM, Nelson AR, Hemphill-Haley E, Witter RC (2005) Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone. Geol Soc Am Bull 117:1009–1032

    Article  Google Scholar 

  • Konca AO, Avouac JP, Sladen A, Meltzner AJ, Sieh K, Peng Fang P, Li Zhenhong Z, Galetzka J, Genrich J, Chlieh C, Natawidjaja DH, Bock Y, Fielding EJ, Ji C, Helmberger DV (2008) Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456:631–635

    Article  Google Scholar 

  • Kulm LD, Von Huene R, The Shipboard Scientific Party (1973) Initial reports of the Deep Sea Drilling Project, 18. Washington, DC, US Government Printing Office, pp 97–168

  • Lander JF, Lockridge PA, Kozuch MJ (1993) Tsunamis affecting the West Coast of the United States, 1806–1992. NGDC Key to Geophysical Records, Documentation no. 29

  • Leonard LJ, Hyndman RD, Mazzotti S (2004) Coseismic subsidence in the 1700 great Cascadia earthquake: coastal estimates versus elastic dislocation models. Geol Soc Am Bull 116:655–670

    Article  Google Scholar 

  • Mandal N, Chattopadhyay A, Bose S (1997) Imbricate thrust spacing: experimental and theoretical analyses. In: Sengupta S (ed) Evolution of geological structures in micro- to macro-scales, Chapter 8.1. Chapman and Hall, London

    Google Scholar 

  • Mann DM, Snavely PD Jr (1984) Multichannel seismic-reflection profiles collected in 1977 in the eastern Pacific Ocean off of the Washington/Oregon coast. US Geological Survey Open-File Report 84-0005

  • McCaffrey R (1997) Influences of recurrence times and fault zone temperatures on the age-rate dependence of subduction zone seismicity. J Geophys Res 102(B10):22839–22854

    Article  Google Scholar 

  • McCaffrey R, Long MD, Goldfinger C, Zwick PC, Nabelek JL, Johnson CK, Smith C (2000) Rotation and plate locking at the southern Cascadia subduction zone. Geophys Res Lett 27:3117–3120

    Article  Google Scholar 

  • McCaffrey R, Qamar A, King RW, Wells RW, Khazaradze G, Williams C, Stevens C, Vollick JJ, Zwick PC (2007) Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophys J Int 169:1315–1340

    Article  Google Scholar 

  • McCrory PA, Blair JL, Oppenheimer DH, Walter SR (2004) Depth to the Juan de Fuca slab beneath the Cascadia subduction margin—a 3-D model for sorting earthquakes. US Geological Survey Data Series DS-91. http://pubsusgsgov/ds/91/. Accessed 5 Sept 2006

  • McNeill LC, Piper KA, Goldfinger C, Kulm LD, Yeats RS (1997) Listric normal faulting on the Cascadia continental margin. J Geophys Res 102(B6):12123–12138

    Article  Google Scholar 

  • McNeill LC, Goldfinger C, Kulm LD, Yeats RS (2000) Tectonics of the Neogene Cascadia forearc basin: investigations of a deformed late Miocene unconformity. Geol Soc Am Bull 112(8):1209–1224

    Article  Google Scholar 

  • Mitchell CE, Vincent P, Weldon RJ II, Richards MA (1994) Present-day vertical deformation of the Cascadia margin, Pacific northwest, USA. J Geophys Res 99:12257–12277

    Article  Google Scholar 

  • Mofjeld HO, Foreman MGG, Ruffman A (1997) West Coast tides during Cascadia subduction zone tsunamis. Geophys Res Lett 24(17):2215–2218

    Article  Google Scholar 

  • Myers EP III, Baptista AM (2001) Analysis of factors influencing simulations of the 1993 Hokkaido Nansei-Oki and 1964 Alaska Tsunamis. Nat Hazards 23:1–28

    Article  Google Scholar 

  • Myers EP III (1999) Physical and numerical analysis of long wave modeling for tsunamis and tides. Dissertation thesis, Oregon Graduate Institute of Science & Technology, Hillsboro, OR

  • Nelson AR, Kelsey HM, Witter RC (2006) Great earthquakes of variable magnitude at the Cascadia subduction zone. Quat Res 65:354–365

    Article  Google Scholar 

  • Nelson AR, Sawai Y, Jenningsc AE, Bradleya L, Gersonc L, Sherrod BL, Sabeane J, Horton BP (2008) Great-earthquake paleogeodesy and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast, USA. Quat Sci Rev 27:747–768

    Article  Google Scholar 

  • Ng MK-F, LeBlond PH, Murty TS (1990) Simulation of tsunamis from great earthquakes on the Cascadia subduction zone. Science 250:1248–1251

    Article  Google Scholar 

  • Obermeier SF, Dickenson SE (2000) Liquefaction evidence for the strength of ground motions resulting from Late Holocene Cascadia subduction earthquakes, with emphasis on the event of 1700 AD. Bull Seismol Soc Am 90(4):876–896

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154

    Google Scholar 

  • Olmstead D (2003) Development in Oregon’s tsunami inundation zone: information guide for developers and local government. Oregon Department of Geology Mineral Industries Open-File Report O-03-05

  • Park JO, Tsuru T, Kodaira S, Cummins PR, Kaneda Y (2002) Splay fault branching along the Nankai subduction zone. Science 297:1157–1160

    Article  Google Scholar 

  • Plafker G (1972) Alaskan earthquake of 1964 and Chilean earthquake of 1960: Implications for arc tectonics. J Geophys Res 77:901–925

    Article  Google Scholar 

  • Preuss J, Hebenstreit GT (1998) Integrated tsunami-hazard assessment for a coastal community, Grays Harbor, Washington. US Geological Survey Professional Paper 1560 vol 2, pp 517–536

  • Priest GR (1995) Explanation of mapping methods and use of the tsunami hazard maps of the Oregon coast. Oregon Department of Geology Mineral Industries Open-File Report O-95-67

  • Priest GR, Allan JC (2004) Evaluation of coastal erosion hazard zones along dune and bluff backed shorelines in Lincoln County, Oregon: Cascade Head to Seal Rock, Technical Report to Lincoln County. Oregon Department of Geology Mineral Industries Open-File Report O-04-09

  • Priest GR, Myers E, Baptista A, Kamphaus RA, Peterson C (1997) Cascadia subduction zone tsunamis: hazard mapping at Yaquina Bay, Oregon. Oregon Department of Geology Mineral Industries Open-File Report O-97-34

  • Priest GR, Chawla A, Allan JC (2007) Tsunami hazard map of the Florence-Siuslaw River area, Lane County, Oregon. Oregon Department of Geology Mineral Industries IMS-25

  • Priest GR, Goldfinger C, Wang K, Witter RC, Zhang Y, Baptista AM (2009) Tsunami hazard assessment of the Northern Oregon coast: a multi-deterministic approach tested at Cannon Beach, Clatsop County, Oregon. Oregon Department of Geology Mineral Industries Special Paper 41

  • Rikitake T (1999) Probability of a great earthquake to recur in the Tokai district, Japan: reevaluation based on newly-developed paleoseismology, plate tectonics, tsunami study, micro-seismicity and geodetic measurements. Earth Planets Space 51(3):147–157

    Google Scholar 

  • Satake K, Shimazaki K, Tsuji Y, Ueda K (1996) Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature 379:246–249

    Article  Google Scholar 

  • Satake K, Wang K, Atwater BF (2003) Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. J Geophys Res 108:ESE7-1–ESE7-17

    Google Scholar 

  • Sawai Y, Satake K, Kamataki T, Nasu H, Shishikura M, Atwater BF, Horton BP, Kelsey HM, Nagumo T, Yamaguchi M (2004) Transient uplift after a 17th-century earthquake along the Kuril subduction zone. Science 306:1918–1920

    Article  Google Scholar 

  • Schmidt D, Burgette R, Weldon R (2007) The distribution of interseismic locking on the central Cascadia subduction zone inferred from coastal uplift rates in Oregon. Eos Trans Am Geophys Union vol 88 (T52A-04)

  • Seno T (2002) Tsunami earthquake as transient phenomena. Geophys Res Lett 29(10):1419. doi: 10029/2002GL014868

    Google Scholar 

  • Song T-RA, Simons M (2003) Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science 301:630–633

    Article  Google Scholar 

  • Szeliga W, Melbourne T, Santillan M, Miller M (2008) GPS constraints on 34 slow slip events within the Cascadia subduction zone, 1997–2005. J Geophys Res 113:B04404. doi:10.1029/2007JB004948

    Article  Google Scholar 

  • Tadepalli S, Synolakis CE (1994) The run-up of N-waves on sloping beaches. Proc R Soc Lond A 445:99–112

    Article  Google Scholar 

  • Titov VV, Mofjeld HO, González FI, Neuman JC (1999) Offshore forecasting of Hawaiian tsunamis generated in Alaskan-Aleutian subduction zone. NOAA Technical Memorandum ERL PMEL-114

  • Titov VV, González FI, Mofjeld HO, Neuman JC (2001) Project SIFT (short term inundation forecasting for tsunamis). International tsunami symposium 2001 proceedings, vol 7-2, pp 715–721

  • Trehu AM, Braunmiller J, Nabelek JL (2008) Probable low-angle thrust earthquakes on the Juan de Fuca-North America plate boundary. Geology 36:127–130

    Article  Google Scholar 

  • Tsunami Pilot Study Working Group (2006) Seaside, Oregon tsunami pilot study—modernization of FEMA flood hazard maps. National Oceanic and Atmospheric Administration OAR Special Report, NOAA/OAR/PMEL, Seattle, WA

  • Walsh TJ, Caruthers CG, Heinitz AC, Myers EP III, Baptista AM, Erdakos GB, Kamphaus RA (2000) Tsunami hazard map of the southern Washington coast; modeled tsunami inundation from a Cascadia subduction zone earthquake. Wash Division of Geology and Earth Resources Geologic Map GM-49

  • Wang K (2007) Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles. In: Dixon T, Moore JC (eds) The seismogenic zone of subduction thrust faults. Columbia University Press, New York, pp 540–575

    Google Scholar 

  • Wang K, He J (1999) Mechanics of low-stress forearcs: Nankai and Cascadia. J Geophys Res 104(B7):15191–15205

    Article  Google Scholar 

  • Wang K, He J (2008) Effects of frictional behaviour and geometry of subduction fault on coseismic seafloor deformation. Bull Seismol Soc Am 98(2):571–579

    Article  Google Scholar 

  • Wang K, Hu Y (2006) Accretionary prisms in subduction earthquake cycles: the theory of dynamic Coulomb wedge. J Geophys Res 111:B06410. doi:10.1029/2005JB004094

    Article  Google Scholar 

  • Wang K, Wells R, Mazzotti S, Hyndman RD, Sagiya T (2003) A revised dislocation model of interseismic deformation of the Cascadia subduction zone. J Geophys Res 108(B1):2026. doi:10.1029/2001JB001227

    Article  Google Scholar 

  • Wells RE, Blakely RJ, Sugiyama Y, Scholl DW, Dinterman PA (2003) Basin-centered asperities in great subduction zone earthquakes: a link between slip, subsidence, and subduction erosion. J Geophys Res 108(B10):2507. doi:101029/2002JB002072

    Article  Google Scholar 

  • Werner KS, Graven EP, Berkman TA, Parker MJ (1991) Direction of maximum horizontal compression in western Oregon determined by borehole breakouts. Tectonics 10(5):948–958

    Article  Google Scholar 

  • Whitmore PM (1993) Expected tsunami amplitudes and currents along the North American coast for Cascadia subduction zone earthquakes. Nat Hazards 8:59–73

    Article  Google Scholar 

  • Witter RC (2008) Prehistoric Cascadia tsunami inundation and runup at Cannon Beach, Oregon. Oregon Department of Geology Mineral Industries technical report to the Cannon Beach Rural Fire Protection District. Oregon Department of Geology Mineral Industries Open-File Report O-08-12

  • Zhang Y, Baptista AM (2008) An efficient and robust tsunami model on unstructured grids part I: inundation benchmarks. Pure Appl Geophys 165(11–12):2229–2248. doi:101007/s00024-008-0424-7

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was supported by National Oceanic and Atmospheric Administration (NOAA) Requisition Number NRMAH000-6-01035 through Oregon Department of Geology and Mineral Industries (DOGAMI) Intergovernmental Agreement number 61110-09192006, and support from the City of Cannon Beach, the Cannon Beach Rural Fire Protection District, and the Seaside School District through Intergovernmental Agreement 41180-63006. The Pacific Marine Environmental Laboratory of NOAA kindly provided earthquake source data for the two distant tsunami scenarios and cooperated at every stage of the investigation. Harvey Kelsey of Humboldt State University, Vasily Titov of NOAA and Eric Geist of the US Geological Survey provided key reviews of an early draft. Brian Atwater of the USGS reviewed a later draft and offered key advice on paleosubsidence data. The authors acknowledge Western Geco and the US Geological Survey for providing some of the seismic reflection data for the purpose of this research. Angie Venturato of NOAA produced the initial compilation of topographic and bathymetric data. Charles Seaton of the OGI School of Science and Engineering, Oregon Health & Science University provided key support with data reduction at all stages of the project. Ian Madin, Vicki McConnell and Don Lewis of DOGAMI provided helpful review and advice. We thank local stakeholders for their wise council and cooperation, particularly Al Aya and Cleve Rooper of the Cannon Beach Rural Fire Protection District, Richard Mays and Jay Raskin of the City of Cannon Beach, and Doug Dougherty, Superintendent of the Seaside School District.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George R. Priest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priest, G.R., Goldfinger, C., Wang, K. et al. Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone. Nat Hazards 54, 27–73 (2010). https://doi.org/10.1007/s11069-009-9453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-009-9453-5

Keywords

Navigation