Skip to main content

Advertisement

Log in

A novel data mining technique of analysis and classification for landslide problems

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Landslides during earthquakes have led to severe casualties and have resulted in damaged structures and facilities. The goal of the present study is to analyze the landslide problems in a remote area—Shei-Pa National Park in Taiwan. Spatial information techniques (Remote Sensing and Geographic Information System) with an innovative data mining technique, Discrete Rough Set (DRS) method, are incorporated to our study for analyzing landslides, their distribution, and classification. The present study provides how to find (1) the most representative data of landslide samples from the existing database, (2) the core attributes of the target categories: Normalized Difference Vegetation Index (NDVI) and Vegetation Index (VI), and (3) the thresholds (segment points) of each attribute on the target categories. A conventional approach, C4.5 Decision Tree Analysis, is used as a comparison. The methodology discussed in this study is of help to the analysis of landslide problems and thus facilitates the informed decision-making process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aitkenhead MJ, McDonald AJS, Dawson JJ, Couper G, Smart RP, Billett M, Hope D, Palmer S (2003) A novel method for training neural networks for time-series prediction in environmental systems. Ecol Model 162:87–95. doi:10.1016/S0304-3800(02)00401-5

    Article  Google Scholar 

  • Auer K, Shakoor A (1993) A statistical approach to evaluate debris avalanche activity in central Virginia. Eng Geol 33:305–321. doi:10.1016/0013-7952(93)90032-8

    Article  Google Scholar 

  • Borga M, Tonelli F, Fontana GD, Cazorzi F (2005) Evaluating the influence of forest roads on shallow landsliding. Ecol Model 187:85–98

    Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Belmont

    Google Scholar 

  • Caine M (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geogr Ann Ser A Phys Geogr 62(1/2):23–27

    Article  Google Scholar 

  • Cascini L, Critelli S, Gulla G, Di Nocera S (1991) A methodological approach to landslide hazard assessment: a case history. In: Proceedings of 16th international landslide conference. Balkema, pp 899–904

  • Cotecchia V (1986) Ground deformations and slope instability produced by the earthquake of 23 November, 1980 in Campania and Basilicata. Geol Appl Idrogeol 21(5):31–100

    Google Scholar 

  • Dai FC, Lee CF (2001) Frequency–volume relation and prediction of rainfall-induced landslides. Eng Geol 59(3–4):253–266. doi:10.1016/S0013-7952(00)00077-6

    Article  Google Scholar 

  • Düzgün HSB, Özdemir A (2006) Landslide risk assessment and management by decision analytical procedure for Dereköy, Konya, Turkey. Nat Hazards 39(2):245–263. doi:10.1007/s11069-006-0026-6

    Article  Google Scholar 

  • Friedl MA, Brodley CE, Strahler AH (1999) Maximizing land cover classification accuracies produced by decision tree at continental to global scales. IEEE Trans Geosci Remote Sens 37:969–977

    Article  Google Scholar 

  • Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2):215–223. doi:10.2307/1268518

    Article  Google Scholar 

  • Guzzetti F, Carrarara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216. doi:10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Harp EL, Jibson RW (1996) Landslides triggered by the 1994 Northridge, California earthquake. Bull Seismolog Soc Am 86(1B):361 pp

    Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:53–70. doi:10.1016/0034-4257(88)90041-7

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Article  Google Scholar 

  • Jibson RW (1993) Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis. Transp Res Rec 1411:9–17

    Google Scholar 

  • Jibson RW, Harp EL, Keefer DK, Wilson RC (1994) Landslides triggered by the Northridge earthquake. US Geol Surv Earthq Volcanoes 25:31–41

    Google Scholar 

  • Keefer DK (2000) Statistical analysis of an earthquake-induced landslide distribution the 1989 Loma Prieta, California event. Eng Geol 58:231–249. doi:10.1016/S0013-7952(00)00037-5

    Article  Google Scholar 

  • Khazai B, Sitar N (2003) Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events. Eng Geol 71:79–95. doi:10.1016/S0013-7952(03)00127-3

    Article  Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence, vol 2(12), Morgan Kaufmann, San Mateo, pp 1137–1143

  • Lei TC, Wan S, Chou TY (2007) The comparison of PCA and Discrete Rough Set method for feature extraction of Remote Sensing Image Classification—a case study on rice classification, Taiwan. Comput Geosci 12(1):1–14. doi:10.1007/s10596-007-9057-7

    Article  Google Scholar 

  • Lin CY, Lo HM, Chou WC, Lin WT (2004) Vegetation recovery assessment at the Jou-Jou mountain landslide area caused by the 921 earthquake in central Taiwan. Ecol Model 176:75–81. doi:10.1016/j.ecolmodel.2003.12.037

    Article  Google Scholar 

  • Lin PS, Lin JY, Lin SY, Lai J (2006) Hazard assessment of debris flows by statistical analysis and GIS in Central Taiwan. Int J Appl Sci Eng 4(2):165–187

    Google Scholar 

  • Lin WT, Tsai JS, Lin CY, Huang PH (2008) Assessing reforestation placement and benefit for erosion control: a case study on the Chi-Jia-Wan stream, Taiwan. Ecol Model 211:444–452. doi:10.1016/j.ecolmodel.2007.09.025

    Article  Google Scholar 

  • Nguyen SH, Nguyen HS (1998) Pattern extraction from data. Fundam Inform 34(1–2):129–144

    Google Scholar 

  • Nguyen HS, Skowron A (1995) Quantization of real values attributes, rough set and boolean reasoning approaches. In: Proceedings of the 2nd joint conference on information science, Wrightsville Beach, pp 34–37

  • Pal M, Mather PM (2003) An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens Environ 86:554–565. doi:10.1016/S0034-4257(03)00132-9

    Article  Google Scholar 

  • Parise M, Jibson RW (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Eng Geol 58:251–270. doi:10.1016/S0013-7952(00)00038-7

    Article  Google Scholar 

  • Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356

    Article  Google Scholar 

  • Pawlak RS (1991) Theoretical aspects of reasoning about data. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  • Refice A (2002) Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Comput Geosci 28:735–749. doi:10.1016/S0098-3004(01)00104-2

    Article  Google Scholar 

  • Richardson AJ, Wiegand CL (1977) Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens 43:1541–1552

    Google Scholar 

  • Rodríguez CE, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980–1997. Soil Dyn Earthq Eng 18:325–346. doi:10.1016/S0267-7261(99)00012-3

    Article  Google Scholar 

  • Teng T, Aki K (eds) (1996) Special issue on the Northridge, California earthquake of January 17, 1994. Bull Seismolog Soc Am 86(1B):361 pp

    Google Scholar 

  • Walczak B, Massart DL (1999) Rough sets theory. Chemom Intell Lab Syst 47:1–16. doi:10.1016/S0169-7439(98)00200-7

    Article  Google Scholar 

  • Wan S, Lei TC, Huang PC, Chou TY (2008) Knowledge rules of debris flow event: a case study for investigation ChenYu Lan River, Taiwan. Eng Geol 98:102–114. doi:10.1016/j.enggeo.2008.01.009

    Article  Google Scholar 

  • Ward TJ, Ruh-Ming L, Simons DB (1982) Mapping landslide hazard in forest watershed. J Geotech Eng Div ASCE 108(GT-2):319–324

    Google Scholar 

  • Zhou JX, Zhu CY, Zheng JM, Wang XH, Liu ZH (2002) Landslide disaster in the loess area of China. J For Res 13(2):157–161

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to express their gratitude for the research assistants of GIS Research Center, Fang Chia University, for providing all the relevant data of Shei-Pa National Park in Taiwan. National Science Council (97-2625-M-275-001) also sponsored this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, S., Lei, T.C. & Chou, T.Y. A novel data mining technique of analysis and classification for landslide problems. Nat Hazards 52, 211–230 (2010). https://doi.org/10.1007/s11069-009-9366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-009-9366-3

Keywords

Navigation