Skip to main content
Log in

Highly sensitive and quantitative FRET–FLIM imaging in single dendritic spines using improved non-radiative YFP

  • Published:
Brain Cell Biology

Abstract

Two-photon fluorescence lifetime imaging microscopy (TPFLIM) enables the quantitative measurements of fluorescence resonance energy transfer (FRET) in small subcellular compartments in light scattering tissue. We evaluated and optimized the FRET pair of mEGFP (monomeric EGFP with the A206K mutation) and REACh (non-radiative YFP variants) for TPFLIM. We characterized several mutants of REACh in terms of their “darkness,” and their ability to act as a FRET acceptor for mEGFP in HeLa cells and hippocampal neurons. Since the commonly used monomeric mutation A206K increases the brightness of REACh, we introduced a different monomeric mutation (F223R) which does not affect the brightness. Also, we found that the folding efficiency of original REACh, as measured by the fluorescence lifetime of a mEGFP–REACh tandem dimer, was low and variable from cell to cell. Introducing two folding mutations (F46L, Q69M) into REACh increased the folding efficiency by ∼50%, and reduced the variability of FRET signal. Pairing mEGFP with the new REACh (super-REACh, or sREACh) improved the signal-to-noise ratio compared to the mEGFP–mRFP or mEGFP–original REACh pair by ∼50%. Using this new pair, we demonstrated that the fraction of actin monomers in filamentous and globular forms in single dendritic spines can be quantitatively measured with high sensitivity. Thus, the mEGFP–sREACh pair is suited for quantitative FRET measurement by TPFLIM, and enables us to measure protein–protein interactions in individual dendritic spines in brain slices with high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez, V. A., Sabatini, B. L. (2007). Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79–97

    Article  PubMed  CAS  Google Scholar 

  • Bassell, G. J., Zhang, H., Byrd, A. L., Femino, A. M., Singer, R. H., Taneja, K. L., Lifshitz, L. M., Herman, I. M., Kosik, K. S. (1998). Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci. 18, 251–265

    PubMed  CAS  Google Scholar 

  • Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., Tsien, R. Y. (2002). A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882

    Article  PubMed  CAS  Google Scholar 

  • Eom, T., Antar, L. N., Singer, R. H., Bassell, G. J. (2003). Localization of a beta-actin messenger ribonucleoprotein complex with zipcode-binding protein modulates the density of dendritic filopodia and filopodial synapses. J. Neurosci. 23, 10433–10444

    PubMed  CAS  Google Scholar 

  • Fischer, A., Sananbenesi, F., Schrick, C., Spiess, J., Radulovic, J. (2004). Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J. Neurosci. 24, 1962–1966

    Article  PubMed  CAS  Google Scholar 

  • Ganesan, S., Ameer-Beg, S. M., Ng, T. T., Vojnovic, B., Wouters, F. S. (2006). A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Forster resonance energy transfer with GFP. Proc. Natl. Acad. Sci. USA 103, 4089–4094

    Article  PubMed  CAS  Google Scholar 

  • Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., Tsien, R. Y. (2001). Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194

    Article  PubMed  CAS  Google Scholar 

  • Hering, H., Sheng, M. (2003). Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. J. Neurosci. 23, 11759–11769

    PubMed  CAS  Google Scholar 

  • Holmes, K. C., Popp, D., Gebhard, W., Kabsch, W. (1990). Atomic model of the actin filament. Nature 347, 44–49

    Article  PubMed  CAS  Google Scholar 

  • Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G. C., Kasai, H. (2008). The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57, 719–729

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, M. B., Beale, H. C., Carlisle, H. J., Washburn, L. R. (2005). Integration of biochemical signalling in spines. Nat. Rev. Neurosci. 6, 423–34

    Article  PubMed  CAS  Google Scholar 

  • Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., Miyawaki, A. (2006). A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol. 24, 577–581

    Article  PubMed  CAS  Google Scholar 

  • Krucker, T., Siggins, G. R., Halpain, S. (2000). Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl. Acad. Sci. USA 97, 6856–6861

    Article  PubMed  CAS  Google Scholar 

  • Kwok, S., Lee, C., Sanchez, S. A., Hazlett, T. L., Gratton, E., Hayashi, Y. (2008). Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity. Biochem. Biophys. Res. Commun. 369, 519–525

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. Plenum, NY, USA

    Google Scholar 

  • Lamprecht, R., LeDoux, J. (2004). Structural plasticity and memory. Nat. Rev. Neurosci. 5, 45–54

    Article  PubMed  CAS  Google Scholar 

  • Matus, A. (2000). Actin-based plasticity in dendritic spines. Science 290, 754–758

    Article  PubMed  CAS  Google Scholar 

  • McAllister, A. K. (2000). Biolistic transfection of neurons. Sci. STKE, PL1

  • Miyawaki, A. (2003). Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell. 4, 295–305

    Article  PubMed  CAS  Google Scholar 

  • Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, K., Nagai, T., Miyawaki, A., Hayashi, Y. (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104–1112

    Article  PubMed  CAS  Google Scholar 

  • Peter, M., Ameer-Beg, S. M., Hughes, M. K., Keppler, M. D., Prag, S., Marsh, M., Vojnovic, B., Ng, T. (2005). Multiphoton-FLIM quantification of the EGFP–mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys. J. 88, 1224–1237

    Article  PubMed  CAS  Google Scholar 

  • Sekino, Y., Kojima, N., Shirao, T. (2007). Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem. Int. 51, 92–104

    Article  PubMed  CAS  Google Scholar 

  • Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 12, 1567–1572

    Article  Google Scholar 

  • Star, E. N., Kwiatkowski, D. J., Murthy, V. N. (2002). Rapid turnover of actin in dendritic spines and its regulation by activity. Nat. Neurosci. 5, 239–246

    Article  PubMed  CAS  Google Scholar 

  • Stoppini, L., Buchs, P. A., Muller, D. A. (1991). A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182

    Article  PubMed  CAS  Google Scholar 

  • Tramier, M., Zahid, M., Mevel, J. C., Masse, M. J., Coppey-Moisan, M. (2006). Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsci. Res. Tech. 69, 933–939

    Article  CAS  Google Scholar 

  • Wang, X. B., Yang, Y., Zhou, Q. (2007). Independent expression of synaptic and morphological plasticity associated with long-term depression. J. Neurosci. 27, 12419–12429

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, R. (2006). Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy. Curr. Opin. Neurobiol. 16, 551–561

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, R., Harvey, C. D., Zhong, H., Sobczyk, A., van Aelst, L., Svoboda, K. (2006). Super-sensitive Ras activation in dendrites and spines revealed by 2-photon fluorescence lifetime imaging. Nat. Neurosci. 9, 283–291

    Article  PubMed  CAS  Google Scholar 

  • Zacharias, D. A., Violin, J. D., Newton, A. C., Tsien, R. Y. (2002). Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Benson, D. L. (2001). Stages of synapse development defined by dependence on F-actin. J. Neurosci. 21, 5169–5181

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Y. Hayashi, M. Matsuda, and A. Miyawaki for plasmids, K. Svoboda and H. Zhong for discussion, and C. Harvey, and M. Patterson for comments on the manuscript. We also thank A. Wan for preparing cultured slices and T. Zimmerman for laboratory management. This study was supported by the Burroughs Wellcome Fund, Alfred P. Sloan foundation, Dana foundation, National Aliance of Autism Research, National Institute of Health/National Institute of Mental Health, National Science Foundation, and the Japan Society for the Promotion of Science (HM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryohei Yasuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murakoshi, H., Lee, SJ. & Yasuda, R. Highly sensitive and quantitative FRET–FLIM imaging in single dendritic spines using improved non-radiative YFP. Brain Cell Bio 36, 31–42 (2008). https://doi.org/10.1007/s11068-008-9024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11068-008-9024-9

Keywords

Navigation