Skip to main content
Log in

Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells

  • Research Article
  • Published:
Brain Cell Biology

Abstract

The receptor tyrosine kinase TrkB and its ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), are critically important for growth, survival and activity-dependent synaptic strengthening in the central nervous system. These TrkB-mediated actions occur in a highly cell-type specific manner. Here we report that cerebellar Purkinje cells, which are richly endowed with TrkB receptors, develop a normal morphology in trkB-deficient mice. Thus, in contrast to other types of neurons, Purkinje cells do not need TrkB for dendritic growth and spine formation. Instead, we find a moderate delay in the maturation of GABAergic synapses and, more importantly, an abnormal multiple climbing fiber innervation in Purkinje cells in trkB-deficient mice. Thus, our results demonstrate an involvement of TrkB receptors in synapse elimination and reveal a new role for receptor tyrosine kinases in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adcock, K. H., Metzger, F., and Kapfhammer, J. P. (2004). Purkinje cell dendritic tree development in the absence of excitatory neurotransmission and of brain-derived neurotrophic factor in organotypic slice cultures. Neuroscience 127, 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Aiba, A., Kano, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., Zwingman, T. A., and Tonegawa, S. (1994). Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79, 377–388.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J. (1972). Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145, 399–463.

    CAS  Google Scholar 

  • Bao, S., Chen, L., Qiao, X., and Thompson, R. F. (1999). Transgenic brain-derived neurotrophic factor modulates a developing cerebellar inhibitory synapse. Learn Mem 6, 276–283.

    PubMed  CAS  Google Scholar 

  • Baxter, G. T., Radeke, M. J., Kuo, R. C., Makrides, V., Hinkle, B., Hoang, R., Medina-Selby, A., Coit, D., Valenzuela, P., and Feinstein, S. C. (1997). Signal transduction mediated by the truncated trkB receptor isoforms, trkB.T1 and trkB.T2. J Neurosci 17, 2683–2690.

    CAS  Google Scholar 

  • Bibel, M. and Barde, Y. A. (2000). Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14, 2919–2937.

    Article  PubMed  CAS  Google Scholar 

  • Bosman, L. W. J., Rosahl, T. W., and Brussaard, A. B. (2002). Neonatal development of the rat visual cortex: synaptic function of GABAA receptor α subunits. J Physiol (London) 545, 169–181.

    Article  CAS  Google Scholar 

  • Cabelli, R. J., Hohn, A., and Shatz, C. J. (1995). Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science 267, 1662–1666.

    Article  PubMed  CAS  Google Scholar 

  • Carter, A. R., Chen, C., Schwartz, P. M., and Segal, R. A. (2002). Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci 22, 1316–1327.

    PubMed  CAS  Google Scholar 

  • Chakravarthy, S., Saiepour, M. H., Bence, M., Perry, S., Hartman, R., Couey, J. J., Mansvelder, H. D., and Levelt, C. N. (2006). Postsynaptic TrkB signaling has distinct roles in spine maintenance in adult visual cortex and hippocampus. Proc Natl Acad Sci USA 103, 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  • Crépel, F., Delhaye-Bouchaud, N., and Dupont, J. L. (1981). Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, X-irradiated and hypothyroid rats. Brain Res: Dev Brain Res 1, 59–71.

    Article  Google Scholar 

  • Dijkhuizen, P. A. and Ghosh, A. (2005). Regulation of dendritic growth by calcium and neurotrophin signaling. Prog Brain Res 147, 17–27.

    PubMed  CAS  Google Scholar 

  • Finkbeiner, S., Tavazoie, S. F., Maloratsky, A., Jacobs, K. M., Harris, K. M., and Greenberg, M. E. (1997). CREB: a major mediator of neuronal neurotrophin responses. Neuron 19, 1031–1047.

    Article  PubMed  CAS  Google Scholar 

  • Galhardo, V. and Lima, D. (1999). Structural characterization of marginal (lamina I) spinal cord neurons in the cat: a Golgi study. J Comp Neurol 414, 315–333.

    Article  PubMed  CAS  Google Scholar 

  • Hammer, O., Harper, D. A. T., and Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electronica 4, 9–17.

    Google Scholar 

  • Hartmann, J., Blum, R., Kovalchuk, Y., Adelsberger, H., Kuner, R., Durand, G. M., Miyata, M., Kano, M., Offermanns, S., and Konnerth, A. (2004). Distinct roles of Gαq and Gα11 for Purkinje cell signaling and motor behavior. J Neurosci 24, 5119–5130.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, K., Ichikawa, R., Takechi, H., Inoue, Y., Aiba, A., Sakimura, K., Mishina, M., Hashikawa, T., Konnerth, A., Watanabe, M., and Kano, M. (2001). Roles of glutamate receptor δ2 subunit (GluRδ2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J Neurosci 21, 9701–9712.

    PubMed  CAS  Google Scholar 

  • Hashimoto, K. and Kano, M. (2003). Functional differentiation of multiple climbing fiber inputs during synapse elimination in the developing cerebellum. Neuron 38, 785–796.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, T., Kasono, K., Araki, K., and Mishina, M. (1995). Suppression of LTD in cultured Purkinje cells deficient in the glutamate receptor δ2 subunit. Neuroreport 6, 524–526.

    Article  PubMed  CAS  Google Scholar 

  • Huang, E. J. and Reichardt, L. F. (2001). Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24, 677–736.

    Article  PubMed  CAS  Google Scholar 

  • Huang, E. J. and Reichardt, L. F. (2003). Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 27, 27.

    Google Scholar 

  • Ji, Y., Pang, P. T., Feng, L., and Lu, B. (2005). Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nature Neurosci 8, 164–172.

    Article  PubMed  CAS  Google Scholar 

  • Kano, M., Hashimoto, K., Chen, C., Abeliovich, A., Aiba, A., Kurihara, H., Watanabe, M., Inoue, Y., and Tonegawa, S. (1995). Impaired synapse elimination during cerebellar development in PKCγ mutant mice. Cell 83, 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  • Kano, M., Hashimoto, K., Kurihara, H., Watanabe, M., Inoue, Y., Aiba, A., and Tonegawa, S. (1997). Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron 18, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Kano, M., Hashimoto, K., Watanabe, M., Kurihara, H., Offermanns, S., Jiang, H., Wu, Y., Jun, K., Shin, H. S., Inoue, Y., Simon, M. I., and Wu, D. (1998). Phospholipase cβ4 is specifically involved in climbing fiber synapse elimination in the developing cerebellum. Proc Natl Acad Sci USA 95, 15724–15729.

    Article  PubMed  CAS  Google Scholar 

  • Kashiwabuchi, N., Ikeda, K., Araki, K., Hirano, T., Shibuki, K., Takayama, C., Inoue, Y., Kutsuwada, T., Yagi, T., Kang, Y., Aizawa, S., and Mishina, M. (1995). Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR δ2 mutant mice. Cell 81, 245–252.

    Article  PubMed  CAS  Google Scholar 

  • Klein, R., Smeyne, R. J., Wurst, W., Long, L. K., Auerbach, B. A., Joyner, A. L., and Barbacid, M. (1993). Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75, 113–122.

    PubMed  CAS  Google Scholar 

  • Konnerth, A., Llano, I., and Armstrong, C. M. (1990). Synaptic currents in cerebellar Purkinje cells. Proc Natl Acad Sci USA 87, 2662–2665.

    Article  PubMed  CAS  Google Scholar 

  • Larramendi, E. M. and Victor, T. (1967). Synapses on the Purkinje cell spines in the mouse. An electronmicroscopic study. Brain Res 5, 15–30.

    CAS  Google Scholar 

  • Laurie, D. J., Seeburg, P. H., and Wisden, W. (1992). The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci 12, 1063–1076.

    CAS  Google Scholar 

  • Llano, I., Marty, A., Armstrong, C. M., and Konnerth, A. (1991). Synaptic- and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices. J Physiol (London) 434, 183–213.

    CAS  Google Scholar 

  • Luikart, B. W., Nef, S., Virmani, T., Lush, M. E., Liu, Y., Kavalali, E. T., and Parada, L. F. (2005). TrkB has a cell-autonomous role in the establishment of hippocampal Schaffer collateral synapses. J Neurosci 25, 3774–3786.

    Article  PubMed  CAS  Google Scholar 

  • Martínez, A., Alcántara, S., Borrell, V., Del Río, J. A., Blasi, J., Otal, R., Campos, N., Boronat, A., Barbacid, M., Silos-Santiago, I., and Soriano, E. (1998). TrkB and TrkC signaling are required for maturation and synaptogenesis of hippocampal connections. J Neurosci 18, 7336–7350.

    PubMed  Google Scholar 

  • Mason, C. A., Christakos, S., and Catalano, S. M. (1990). Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum. J Comp Neurol 297, 77–90.

    Article  PubMed  CAS  Google Scholar 

  • Mcallister, A. K. (2001). Neurotrophins and neuronal differentiation in the central nervous system. Cell Mol Life Sci 58, 1054–1060.

    Article  PubMed  CAS  Google Scholar 

  • Miale, I. L. and Sidman, R. L. (1961). An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4, 277–296.

    Article  PubMed  CAS  Google Scholar 

  • Middlemas, D. S., Lindberg, R. A., and Hunter, T. (1991). trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors. Mol Cell Biol 11, 143–153.

    PubMed  CAS  Google Scholar 

  • Milligan, G. W. (1980). An examination of the effect of six types of error perturbations on fifteen clustering algorithms. Psychometrika 45, 325–342.

    Article  Google Scholar 

  • Minichiello, L., Calella, A. M., Medina, D. L., Bonhoeffer, T., Klein, R., and Korte, M. (2002). Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36, 121–137.

    Article  PubMed  CAS  Google Scholar 

  • Minichiello, L. and Klein, R. (1996). TrkB and TrkC neurotrophin receptors cooperate in promoting survival of hippocampal and cerebellar granule cells. Genes Dev 10, 2849–2858.

    Article  PubMed  CAS  Google Scholar 

  • Moore, D. B., Madorsky, I., Paiva, M., and Barrow Heaton, M. (2004). Ethanol exposure alters neurotrophin receptor expression in the rat central nervous system: Effects of prenatal exposure. J Neurobiol 60, 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, D. D., Cole, N. B., and Segal, M. (1998). Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons. Proc Natl Acad Sci USA 95, 11412–11417.

    Article  PubMed  CAS  Google Scholar 

  • Nikolenko, V., Nemet, B., and Yuste, R. (2003). A two-photon and second-harmonic microscope. Methods 30, 3–15.

    Article  PubMed  CAS  Google Scholar 

  • Offermanns, S., Hashimoto, K., Watanabe, M., Sun, W., Kurihara, H., Thompson, R. F., Inoue, Y., Kano, M., and Simon, M. I. (1997). Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Gαq. Proc Natl Acad Sci USA 94, 14089–14094.

    Article  PubMed  CAS  Google Scholar 

  • Ribar, T. J., Rodriguiz, R. M., Khiroug, L., Wetsel, W. C., Augustine, G. J., and Means, A. R. (2000). Cerebellar defects in Ca2+/calmodulin kinase IV-deficient mice. J Neurosci 20, RC107.

    PubMed  CAS  Google Scholar 

  • Rico, B., Xu, B., and Reichardt, L. F. (2002). TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nature Neurosci 5, 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Riva-Depaty, I., Dubreuil, Y. L., Mariani, J., and Delhaye-Bouchaud, N. (1998). Eradication of cerebellar granular cells alters the developmental expression of trk receptors in the rat inferior olive. Int J Dev Neurosci 16, 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Rohrer, B., Korenbrot, J. I., Lavail, M. M., Reichardt, L. F., and Xu, B. (1999). Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina. J Neurosci 19, 8919–8930.

    PubMed  CAS  Google Scholar 

  • Ross, W. N. and Werman, R. (1987). Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro. J Physiol (London) 389, 319–336.

    CAS  Google Scholar 

  • Schwartz, P. M., Borghesani, P. R., Levy, R. L., Pomeroy, S. L., and Segal, R. A. (1997). Abnormal cerebellar development and foliation in BDNF -/- mice reveals a role for neurotrophins in CNS patterning. Neuron 19, 269–281.

    Article  PubMed  CAS  Google Scholar 

  • Segal, R. A., Pomeroy, S. L., and Stiles, C. D. (1995). Axonal growth and fasciculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells. J Neurosci 15, 4970–4981.

    PubMed  CAS  Google Scholar 

  • Seil, F. J. and Drake-Baumann, R. (2000). TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J Neurosci 20, 5367–5373.

    PubMed  CAS  Google Scholar 

  • Shimada, A., Mason, C. A., and Morrison, M. E. (1998). TrkB signaling modulates spine density and morphology independent of dendrite structure in cultured neonatal Purkinje cells. J Neurosci 18, 8559–8570.

    PubMed  CAS  Google Scholar 

  • Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87, 387–406.

    PubMed  CAS  Google Scholar 

  • Soderling, T. R. (1999). The Ca-calmodulin-dependent protein kinase cascade. Trends Biochem Sci 24, 232–236.

    Article  PubMed  CAS  Google Scholar 

  • Takayama, C. and Inoue, Y. (2004). Transient expression of GABAA receptor α2 and α3 subunits in differentiating cerebellar neurons. Brain Res: Dev Brain Res 148, 169–177.

    Article  CAS  Google Scholar 

  • Tank, D. W., Sugimori, M., Connor, J. A., and Llinás, R. R. (1988). Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242, 773–777.

    Article  PubMed  CAS  Google Scholar 

  • Uzman, L. L. (1960). The histogenesis of the mouse cerebellum as studied by its tritiated thymidine uptake. J Comp Neurol 114, 137–159.

    Article  PubMed  CAS  Google Scholar 

  • Van Pelt, J., Uylings, H. B., Verwer, R. W., Pentney, R. J., and Woldenberg, M. J. (1992). Tree asymmetry—a sensitive and practical measure for binary topological trees. Bull Math Biol 54, 759–784.

    Article  PubMed  CAS  Google Scholar 

  • Yacoubian, T. A. and Lo, D. C. (2000). Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3, 342–349.

    Article  PubMed  CAS  Google Scholar 

  • Yan, Q., Radeke, M. J., Matheson, C. R., Talvenheimo, J., Welcher, A. A., and Feinstein, S. C. (1997). Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J Comp Neurol 378, 135–157.

    Article  PubMed  CAS  Google Scholar 

  • Yuste, R. and Bonhoeffer, T. (2004). Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5, 24–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Konnerth.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosman, L.W.J., Hartmann, J., Barski, J.J. et al. Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells. Brain Cell Bio 35, 87–101 (2006). https://doi.org/10.1007/s11068-006-9002-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11068-006-9002-z

Keywords

Navigation