Skip to main content
Log in

Lingual deficits in neurotrophin double knockout mice

  • Published:
Journal of Neurocytology

Abstract

Brain-derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) are members of the neurotrophin family and are expressed in the developing and adult tongue papillae. BDNF null-mutated mice exhibit specific impairments related to innervation and development of the gustatory system while NT-3 null mice have deficits in their lingual somatosensory innervation. To further evaluate the functional specificity of these neurotrophins in the peripheral gustatory system, we generated double BDNF/NT-3 knockout mice and compared the phenotype to BDNF−/− and wild-type mice. Taste papillae morphology was severely distorted in BDNF−/− xNT-3−/− mice compared to single BDNF−/− and wild-type mice. The deficits were found throughout the tongue and all gustatory papillae. There was a significant loss of fungiform papillae and the papillae were smaller in size compared to BDNF−/− and wild-type mice. Circumvallate papillae in the double knockouts were smaller and did not contain any intraepithelial nerve fibers. BDNF−/− xNT-3−/− mice exhibited additive losses in both somatosensory and gustatory innervation indicating that BDNF and NT-3 exert specific roles in the innervation of the tongue. However, the additional loss of fungiform papillae and taste buds in BDNF−/− xNT-3−/− mice compared to single BDNF knockout mice indicate a synergistic functional role for both BDNF-dependent gustatory and NT-3-dependent somatosensory innervations in taste bud and taste papillae innervation and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AGERMAN, K., HJERLING-LEFFLER, J., BLANCHARD, M. P., SCARFONE, E., CANLON, B., NOSRAT, C. & ERNFORS, P. (2003) BDNF gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development. Development 130, 1479–1491.

    Article  CAS  PubMed  Google Scholar 

  • BARLOW, L. A. & NORTHCUTT, R. G. (1995) Embryonic origin of amphibian taste buds. Developmental Biology 169, 273–285.

    Article  CAS  PubMed  Google Scholar 

  • CHO, T. T. & FARBMAN, A. I. (1999) Neurotrophin receptors in the geniculate ganglion. Brain Research Molecular Brain Research 68, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • CHOI, S., YATES, P. A. & O'LEARY, D. D. M. (1998) Localized BDNF application induces branch-like structures along retinal axons. Society of Neuroscience Abstract 24, 27.

    Google Scholar 

  • ERNFORS, P., LEE, K. F. & JAENISCH, R. (1994a) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368, 147–150.

    Article  CAS  Google Scholar 

  • ERNFORS, P., LEE, K. F., KUCERA, J. & JAENISCH, R. (1994b) Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77, 503–512.

    Article  CAS  Google Scholar 

  • ERNFORS, P., MERLIO, J. & PERSSON, H. (1992) Cells expressing mRNA for neurotrophins and their receptors during embryonic rat development. European Journal of Neuroscience 4, 1140–1158.

    PubMed  Google Scholar 

  • ERNFORS, P., VANDEWATER, T., LORING, J. & JAENISCH, R. (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14, 1153–1164.

    Article  CAS  PubMed  Google Scholar 

  • FAN, L., GIRNIUS, S. & OAKLEY, B. (2004) Support of trigeminal sensory neurons by nonneuronal p75 neurotrophin receptors. Brain Research Developmental Brain Research 150, 23–39.

    CAS  PubMed  Google Scholar 

  • FARBMAN, A. I. (2003) Neurotrophins and taste buds. Journal of Comparative Neurology 459, 9–14.

    Article  CAS  PubMed  Google Scholar 

  • FARBMAN, A. I. & MBIENE, J. P. (1991) Early development and innervation of taste bud-bearing papillae on the rat tongue. Journal of Comparative Neurology 304, 172– 186.

    Article  CAS  PubMed  Google Scholar 

  • FARINAS, I., YOSHIDA, C. K., BACKUS, C. & REICHARDT, L. F. (1996) Lack of neurotrophin-3 results in death of spinal sensory neurons and premature differentiation of their precursors. Neuron 17, 1065–1078.

    Article  CAS  PubMed  Google Scholar 

  • FRITZSCH, B., SARAI, P. A., BARBACID, M. & SILOSSANTIAGO, I. (1997) Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds. International Journal of Developmental Neuroscience 15, 563–576.

    Article  CAS  PubMed  Google Scholar 

  • GANCHROW, D., GANCHROW, J. R., VERDIN-ALCAZAR, M. & WHITEHEAD, M. C. (2003a) Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster. Journal of Comparative Neurology 455, 11–24.

    CAS  Google Scholar 

  • GANCHROW, D., GANCHROW, J. R., VERDIN-ALCAZAR, M. & WHITEHEAD, M. C. (2003b) Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster after sensory denervation. Journal of Comparative Neurology 455, 25–39.

    CAS  Google Scholar 

  • HÖUKFELT, T., FUXE, K., GOLDSTEIN, M. & JOH, T. H. (1973) Immunohistochemical localization of three catecholamine synthesizing enzymes: aspects on methodology. Histochemie 33, 231–254.

    Google Scholar 

  • KRIMM, R. F., MILLER, K. K., KITZMAN, P. H., DAVIS, B. M. & ALBERS, K. M. (2001) Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue. Developmental Biology 232, 508–521.

    Article  CAS  PubMed  Google Scholar 

  • LIEBL, D. J., MBIENE, J. P. & PARADA, L. F. (1999) NT4/5 mutant mice have deficiency in gustatory papillae and taste bud formation. Developmental Biology 213, 378– 389.

    Article  CAS  PubMed  Google Scholar 

  • LINDEMANN, B. (2001) Receptors and transduction in taste. Nature 413, 219–225.

    Article  CAS  PubMed  Google Scholar 

  • MBIENE, J. P., MACCALLUM, D. K. & MISTRETTA, C. M. (1997) Organ cultures of embryonic rat tongue support tongue and gustatory papilla morphogenesis in vitro without intact sensory ganglia. Journal of Comparative Neurology 377, 324–340.

    Article  CAS  PubMed  Google Scholar 

  • MISTRETTA, C. M., GOOSENS, K. A., FARINAS, I. & REICHARDT, L. F. (1999) Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs. Journal of Comparative Neurology 409, 13–24.

    Article  CAS  PubMed  Google Scholar 

  • MISTRETTA, C. M., LIU, H. X., GAFFIELD, W. & MACCALLUM, D. K. (2003) Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: fungiform papillae double in number and form in novel locations in dorsal lingual epithelium. Developmental Biology 254, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • NOSRAT, C. A. (1998) Neurotrophic factors in the tongue; expression patterns, biological activity, relation to innervation and studies of neurotrophin knockout mice. Annals of the New York Academy of Science 855, 28– 50.

    CAS  Google Scholar 

  • NOSRAT, C. A., BLOMLÖF, J., ELSHAMY, W. M., ERNFORS, P. & OLSON, L. (1997) Lingual deficits in BDNF and NT3 mutant mice leading to gustatory and somatosensory disturbances, respectively. Development 124, 1333–1342.

    CAS  PubMed  Google Scholar 

  • NOSRAT, C. A., EBENDAL, T. & OLSON, L. (1996) Differential expression of brain-derived neurotrophic factor and neurotrophin 3 mRNA in lingual papillae and taste buds indicates roles in gustatory and somatosensory innervation. Journal of Comparative Neurology 376, 587– 602.

    Article  CAS  PubMed  Google Scholar 

  • NOSRAT, C. A., FRIED, K., EBENDAL, T. & OLSON, L. (1998) NGF, BDNF, NT-3, NT-4 and GDNF in tooth development. European Journal of Oral Sciences 106, 94– 99.

    CAS  PubMed  Google Scholar 

  • NOSRAT, C. A. & OLSON, L. (1995) Brain-derived neurotrophic factor mRNA is expressed in the developing taste bud-bearing tongue papillae of rat. Journal of Comparative Neurology 360, 698– 704.

    Article  CAS  PubMed  Google Scholar 

  • NOSRAT, C. A. & OLSON, L. (1998) Changes in neurotrophin 3 mRNA expression patterns in the prenatal rat tongue suggest guidance of developing somatosensory nerves to their final targets. Cell Tissue Research 292, 619–623.

    CAS  PubMed  Google Scholar 

  • NOSRAT, I. V., LINDSKOG, S., SEIGER, Å. & NOSRAT, C. A. (2000) Lingual BDNF and NT-3 mRNA expression patterns and their relation to innervation in the human tongue: similarities and differences compared with rodents. Journal of Comparative Neurology 417, 133– 152.

    Article  CAS  PubMed  Google Scholar 

  • RINGSTEDT, T., IBÁÑTEZ, C. F. & NOSRAT, C. A. (1999) Role of BDNF in target invasion in the gustatory system. Journal of Neuroscience 19, 3507–3518.

    CAS  PubMed  Google Scholar 

  • ROCHLIN, M. W., O'CONNOR, R., GIGER, R. J., VERHAAGEN, J. & FARBMAN, A. I. (2000) Comparison of neurotrophin and repellent sensitivities of early embryonic geniculate and trigeminal axons. Journal of Comparative Neurology 422, 579–593.

    Article  CAS  PubMed  Google Scholar 

  • SEGAL, R. A. (2003) Selectivity in Neurotrophin Signaling: Theme and Variations. Annual Reviews in Neuroscience 18, 18.

    Google Scholar 

  • STONE, L. M., FINGER, T. E., TAM, P. & TAN, S. S. (1995) Taste receptor cells arise from local epithelium, not neurogenic ectoderm. Proceedings of the National Academy of Sciences USA 92, 1916–1920.

    Google Scholar 

  • TAKEDA, M., SUZUKI, Y., OBARA, N., UCHIDA, N. & KAWAKOSHI, K. (2004) Expression of GDNF and GFR alpha 1 in mouse taste bud cells. Journal of Comparative Neurology 479, 94–102.

    Article  CAS  PubMed  Google Scholar 

  • UCHIDA, N., KANAZAWA, M., SUZUKI, Y. & TAKEDA, M. (2003) Expression of BDNF and TrkB in mouse taste buds after denervation and in circumvallate papillae during development. Archives of Histology and Cytology 66, 17–25.

    Article  CAS  PubMed  Google Scholar 

  • WILKINSON, G. A., FARINAS, I., BACKUS, C., YOSHIDA, C. K. & REICHARDT, L. F. (1996) Neurotrophin-3 is a survival factor in vivo for early mouse trigeminal neurons. Journal of Neuroscience 16, 7661–7669.

    CAS  PubMed  Google Scholar 

  • YEE, C. L., JONES, K. R. & FINGER, T. E. (2003) Brain-derived neurotrophic factor is present in adult mouse taste cells with synapses. Journal of Comparative Neurology 459, 15–24.

    Article  CAS  PubMed  Google Scholar 

  • ZHANG, C. X., BRANDEMIHL, A., LAU, D., LAWTON, A. & OAKLEY, B. (1997) BDNF is required for the normal development of taste neurons in vivo. Neuroreport 8, 1013–1017.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Nosrat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosrat, I.V., Agerman, K., Marinescu, A. et al. Lingual deficits in neurotrophin double knockout mice. J Neurocytol 33, 607–615 (2004). https://doi.org/10.1007/s11068-005-3330-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11068-005-3330-2

Keywords

Navigation