Skip to main content

Advertisement

Log in

Using Raster-Based GIS and Graph Theory to Analyze Complex Networks

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

Disruptions to transportation networks can be very costly. However, managing disruptions and the costs associated with these events, poses some challenges. Transport networks are, in many cases, large and complex. This paper develops a method, based on complex network theory, to analyse transportation networks. It provides a way, through the use raster-based geographic information system (GIS) techniques, to identify critical nodes or links in a network that reflect spatial interdependencies with other networks and to assess how resilient the networks are to failures of these locations. For purposes of illustration, the method is applied to the network of major roads and rail in the State of Florida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert R, Barabási A (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  Google Scholar 

  • Albert R, Jeong H, Barabási A-L (2000) Attack and error tolerance in complex networks. Nature 406(6794):378–382

    Article  Google Scholar 

  • Alderson D, Doyle J, Govindan R, Willinger W (2003). Toward an optimization-driven framework for designing and generating realistic Internet topologies. ACM SIGCOMM Comput Commun Rev 33:41–46

    Article  Google Scholar 

  • Amaral L, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA 97:11149–11152

    Article  Google Scholar 

  • Barabasi A (2001a) The physics of the web physics world. Physics World, July 2001

  • Barabasi A (2001b) The physics of the web. Physics World 97:11149–11152

    Google Scholar 

  • Barabasi A, Albert A (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  Google Scholar 

  • Barthelemy M (2003) Crossover from scale-free to spatial networks. Europhys Lett 63:915–921

    Article  Google Scholar 

  • Callaway DS, Newman MEJ, Strogatz SH, Watts DJ (2000) Network robustness and fragility: percolation on random graphs. Phys Rev Lett 85:5468–5471

    Article  Google Scholar 

  • Chen Q, Hyunseok C, Govindan R, Sugih J, Schenker S, Willinger W (2001) The origin of power laws in Internet topologies revisited. Proceedings of IEEE Infocom 2002(2):608–617

  • Cohen R, Erez K, Ben-Avraham D, Havlin S (2001) Breakdown of the Internet under intentional attack. Phys Rev Lett 86:3682–3685

    Article  Google Scholar 

  • Erdos P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hungar Acad Sci 5:17–61

    Google Scholar 

  • Faloutsos M, Faloutsos C, Faloutsos P (1999) On power–law relationships of the Internet topology. Comput Commun Rev 29:251–262

    Article  Google Scholar 

  • Garrison W (1960) Connectivity of the interstate highway system. Pap Proc Reg Sci Assoc 6:121–137

    Article  Google Scholar 

  • Gorman SP, Kulkarni R (2004) Spatial small worlds: new geographic patterns for an information economy. Environ Plan B 31:273–296

    Article  Google Scholar 

  • Gorman SP, Malecki EJ (2000) The networks of the Internet: an analysis of provider networks. Telecommun Policy 24:113–134

    Article  Google Scholar 

  • Gorman SP, Schintler L, Kulkarni R, Stough R (2004) The revenge of distance: vulnerability analysis of critical infrastructure. J Conting Crisis Manag 12:48–63

    Article  Google Scholar 

  • Grubesic TH, O’Kelly ME, Murray AT (2003) A geographic perspective on telecommunication network survivability. Telemat Inform 20:51–69

    Article  Google Scholar 

  • Haggett P, Chorley R (1969) Network analysis in geography. New York, NY, USA: St. Martins Press

    Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: review. ACM Comput Surv 31:264–323

    Article  Google Scholar 

  • Kansky K (1963) Structure of transportation networks: relationships between network geometry and regional characteristics. University of Chicago, Department of Geography, Research Papers

  • Lakhina A, Byers JW, Crovella M, Matta I (2002) On the geographic locations of Internet resources http://www.cs.bu.edu/techreports/pdf/2002-015-internetgeography.pdf

  • Malecki EJ (2002) The economic geography of the Internet’s infrastructure. Econ Geogr 78:399–424

    Google Scholar 

  • Nyusten JD, Dacey MF (1968) A graph theory interpretation of nodal regions. In: Berry B, Marble D (eds) Spatial analysis. Prentice Hall, Englewood Cliffs, pp 407–418

    Google Scholar 

  • O’Kelly ME, Grubesic TH (2002) Backbone topology, access, and the commercial Internet, 1997–2000. Environ Plan B 29:533–552

    Article  Google Scholar 

  • Reed WR (1970) Indirect connectivity and hierarchies of urban dominance. Ann Assoc Am Geogr 60:770–785

    Article  Google Scholar 

  • Roth J (1955) An application of algebraic topology to numerical analysis: on the existence of a solution to the network problem. Proc Natl Acad Sci 41:518–521

    Article  Google Scholar 

  • Schintler L, Gorman S, Reggiani A, Patuelli R, Gillespie A, Nijkamp P, Rutherford J (2005) Complex network phenomena in telecommunications systems. Netw Spatial Econ 5:351–370

    Article  Google Scholar 

  • Schintler L, Kulkarni R, Gorman S, Stough R (2006) Power and packets: a spatial network comparison of the U.S. electric power grid and the Internet network. In: Reggiani A, Nijkamp P (eds) Spatial dynamics, networks and modelling. Edward Elgar, Cheltenham and Northampton, pp 35–60

    Google Scholar 

  • Taffee EJ, Gauthier HL (1973) Geography of transportation. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Taubin G (1995) A signal processing approach to fair surface design. In: R Cook (ed) Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp 351–358

  • Townsend A (2001) Network cities and the global structure of the Internet. Am Behav Sci 44:1697–1716

    Article  Google Scholar 

  • Wallace R, Ong P, Schwartz E (1994) Space variant image processing. Int J Comput Vis 13:71–90

    Article  Google Scholar 

  • Wandell B, Chias S, Backus BT (2000) Visualization and measurement of the cortical surface. J Cogn Neurosci 12:739–752

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 363:202–204

    Google Scholar 

  • Wheeler DC, O’Kelly ME (1999) Network topology and city accessibility of the commercial Internet. Prof Geogr 51:327–339

    Article  Google Scholar 

  • Yook SH, Jeong H, Barabási AL (2001) Modeling the Internet’s large-scale topology http://xxx.lanl.gov/abs/cond-mat/0107417

  • Zahn C (1971) Graph theoretical methods for detecting and describing gestalt clusters. IEEE Trans Comput 20:68–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie A. Schintler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schintler, L.A., Kulkarni, R., Gorman, S. et al. Using Raster-Based GIS and Graph Theory to Analyze Complex Networks. Netw Spat Econ 7, 301–313 (2007). https://doi.org/10.1007/s11067-007-9029-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-007-9029-4

Keywords

Navigation