Skip to main content
Log in

Development of the Brain’s Functional Network Architecture

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

A full understanding of the development of the brain’s functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924–935.

    Article  CAS  PubMed  Google Scholar 

  • Asato, M. R., Terwilliger, R., Woo, J., & Luna, B. (2010). White matter development in adolescence: a DTI study. Cerebral Cortex, 20(9), 2122–2131.

    Article  CAS  PubMed  Google Scholar 

  • Birn, R. M., Diamond, J. B., Smith, M. A., & Bandettini, P. A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage, 13(4), 1536–1548.

    Article  Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Bitan, T., Cheon, J., Lu, D., Burman, D. D., Gitelman, D. R., Mesulam, M. M., et al. (2007). Developmental changes in activation and effective connectivity in phonological processing. Neuroimage, 38(3), 564–575.

    Article  PubMed  Google Scholar 

  • Brown, T. T., Lugar, H. M., Coalson, R. S., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2005). Developmental changes in human cerebral functional organization for word generation. Cerebral Cortex, 15, 275–290.

    Article  PubMed  Google Scholar 

  • Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(6), 1860–1873.

    CAS  Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198.

    Article  CAS  PubMed  Google Scholar 

  • Bunge, S. A., & Wright, S. B. (2007). Neurodevelopmental changes in working memory and cognitive control. Current Opinion in Neurobiology, 17(2), 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Castellanos, F. X., Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., Ghaffari, M., Kirsch, A., et al. (2008). Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biological Psychiatry, 63, 332–337.

    Article  PubMed  Google Scholar 

  • Chang, C., Cunningham, J. P., & Glover, G. H. (2009). Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage, 44, 857–869.

    Article  PubMed  Google Scholar 

  • Cherkassky, V. L., Kana, R. K., Keller, T. A., & Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism. NeuroReport, 17(16), 1687–1690.

    Article  PubMed  Google Scholar 

  • Church, J. A., Coalson, R. S., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L. (2008). A developmental fMRI study of reading and repetition reveals changes in phonological and visual mechanisms over age. Cerebral Cortex, 18(9), 2054–2065.

    Article  PubMed  Google Scholar 

  • Church, J. A., Fair, D. A., Dosenbach, N. U., Cohen, A. L., Miezin, F. M., Petersen, S. E., et al. (2009a). Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain: A Journal of Neurology, 132(Pt 1), 225–238.

    Google Scholar 

  • Church, J. A., Wenger, K. K., Dosenbach, N. U., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2009b). Task control signals in pediatric Tourette syndrome show evidence of immature and anomalous functional activity. Frontiers in Human Neuroscience, 3(38).

  • Church, J. A., Petersen, S. E., & Schlaggar, B. L. (2010). The “Task B Problem” and other considerations in developmental functional neuroimaging. Human Brain Mapping, 31(6), 852–862.

    PubMed  Google Scholar 

  • Churchland, P. S., & Sejnowski, T. J. (1991). Perspectives on cognitive neuroscience. In R. G. Lister & H. J. Weingartner (Eds.), Perspectives on cognitive neuroscience. Oxford: Oxford University Press.

    Google Scholar 

  • Cowan, W. M., Fawcett, J., O’Leary, D. D. M., & Stanfield, B. B. (1984). Regressive events in neurogenesis. Science, 225(468), 1258–1265.

    Article  CAS  PubMed  Google Scholar 

  • Cullen, K. R., Gee, D. G., Klimes-Dougan, B., Gabbay, V., Hulvershorn, L., Mueller, B. A., et al. (2009). A preliminary study of functional connectivity in comorbid adolescent depression. Neuroscience Letters, 460, 227–231.

    Article  CAS  PubMed  Google Scholar 

  • Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853.

    Article  CAS  PubMed  Google Scholar 

  • Dosenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., et al. (2006). A core system for the implementation of task sets. Neuron, 50(5), 799–812.

    Article  CAS  PubMed  Google Scholar 

  • Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11073–11078.

    Article  CAS  PubMed  Google Scholar 

  • Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99–105.

    Article  PubMed  Google Scholar 

  • Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Church, J. A., Nelson, S. M., et al. (2010). Prediction of individual brain maturity using fMRI. Science, 329(5997), 1358–1361.

    Article  CAS  PubMed  Google Scholar 

  • Eichler, M. (2005). A graphical approach for evaluating effective connectivity in neural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 953–967.

    Article  Google Scholar 

  • Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., et al. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences of the United States of America, 104(33), 13507–13512.

    Article  CAS  PubMed  Google Scholar 

  • Fair, D. A., Cohen, A. L., Dosenbach, N. U., Church, J. A., Miezin, F. M., Barch, D. M., et al. (2008). The maturing architecture of the brain’s default network. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 4028–4032.

    Article  CAS  PubMed  Google Scholar 

  • Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U., Church, J. A., Miezin, F. M., et al. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5(5), e1000381.

    Article  PubMed  Google Scholar 

  • Fair, D. A., Posner, J., Nagel, B. J., Bathula, D., Costa Dias, T. G., Mills, K. L., et al. (2010). Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry, epub.

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.

    Article  CAS  PubMed  Google Scholar 

  • Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 103(26), 10046–10051.

    Article  CAS  PubMed  Google Scholar 

  • Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 3270–3283.

    Article  PubMed  Google Scholar 

  • Fransson, P., Aden, U., Blennow, M., & Lagercrantz, H. (2010). The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb Cortex, epub.

  • Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 1273–1302.

    Article  CAS  PubMed  Google Scholar 

  • Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2(10), 861–863.

    Article  CAS  PubMed  Google Scholar 

  • Gozzo, Y., Vohr, B., Lacadie, C., Hampson, M., Katz, K. H., Maller-Kesselman, J., et al. (2009). Alterations in neural connectivity in preterm children at school age. Neuroimage, 48, 458–463.

    Article  PubMed  Google Scholar 

  • Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424–438.

    Article  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006). Brain connectivity related to working memory performance. The Journal of Neuroscience, 26(51), 13338–13343.

    Article  CAS  PubMed  Google Scholar 

  • Hampson, M., Tokoglu, F., King, R. A., Constable, R. T., & Leckman, J. F. (2009). Brain areas coactivating with motor cortex during chronic motor tics and intentional movements. Biological Psychiatry, 65, 594–599.

    Article  PubMed  Google Scholar 

  • Hampson, M., Driesen, N., Roth, J. K., Gore, J. C., & Constable, R. T. (2010). Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magnetic Resonance Imaging, epub.

  • He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53(6), 905–918.

    Article  CAS  PubMed  Google Scholar 

  • He, Y., Wang, J., Wang, L., Chen, Z. J., Yan, C., Yang, H., et al. (2009). Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS ONE, 4(4), e5226.

    Article  PubMed  Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: Wiley.

    Google Scholar 

  • Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Research, 163(2), 195–205.

    Article  CAS  PubMed  Google Scholar 

  • Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28(6), 517–527.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M. H. (2000). Functional brain development in infants: elements of an interactive specialization framework. Child Development, 71(1), 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Jones, T. B., Bandettini, P. A., Kenworthy, L., Case, L. K., Milleville, S. C., Martin, A., et al. (2010). Sources of group differences in functional connectivity: an investigation applied to autism spectrum disorder. Neuroimage, 49(1), 401–414.

    Article  PubMed  Google Scholar 

  • Kelly, A. M. C., Di Martino, A., Uddin, L. Q., Shehzad, Z., Gee, D. G., Reiss, P. T., et al. (2009). Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cerebral Cortex, 19(3), 640–657.

    Article  PubMed  Google Scholar 

  • Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization of the brain is altered in autism. Neuroimage, 39(4), 1877–1885.

    Article  PubMed  Google Scholar 

  • Koyama, M. S., Kelly, C., Shehzad, Z., Penesetti, D., Castellanos, F. X., & Milham, M. P. (2010). Reading networks at rest. Cerebral Cortex, epub.

  • Larson-Prior, L. J., Zempel, J. M., Nolan, T. S., Prior, F. W., Snyder, A. Z., & Raichle, M. E. (2009). Cortical network functional connectivity in the descent to sleep. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4489–4494.

    Article  CAS  PubMed  Google Scholar 

  • Latora, V., & Marchiori, M. (2001). Efficient behavior of small world networks. Physical Review Letters, 87(19), 198701.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17558–17563.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, M. J., Mock, B. J., & Sorenson, J. A. (1998). Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 7(2), 119–132.

    Article  CAS  PubMed  Google Scholar 

  • Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., et al. (2001). Maturation of widely distributed brain function subserves cognitive development. Neuroimage, 13(5), 786–793.

    Article  CAS  PubMed  Google Scholar 

  • Luo, L., & O’Leary, D. (2005). Axon retraction and degeneration in development and disease. Annual Review of Neuroscience, 28, 127–156.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M.-M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28(5), 597–613.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage, 44(3), 893–905.

    Article  PubMed  Google Scholar 

  • Myers, E. H., Hampson, M., Vohr, B., Lacadie, C., Frost, S. J., Pugh, K. R., et al. (2010). Functional connectivity to a right hemisphere language center in prematurely born adolescents. Neuroimage, 51, 1445–1452.

    Article  PubMed  Google Scholar 

  • Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8577–8582.

    Article  CAS  PubMed  Google Scholar 

  • Newman, M. (2010). Networks: An introduction. Oxford University Press.

  • Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 69(2 Pt 2), 026113.

    CAS  Google Scholar 

  • Newsome, W. T., & Allman, J. M. (1980). Interhemispheric connections of visual cortex in the owl monkey, Aotus trivergatus, and the bushbaby, Galago senegalensis. The Journal of Comparative Neurology, 194(1), 209–233.

    Article  CAS  PubMed  Google Scholar 

  • Ongur, D., Ferry, A. T., & Price, J.L. (2003). Architectonic subdivision of the human orbital and medial prefrontal cortex. Journal of Comparative Neurology, 460(3), 425–429.

    Article  PubMed  Google Scholar 

  • Poldrack, R. A. (2010). Interpreting developmental changes in neuroimaging signals. Human Brain Mapping, 31, 872–878.

    PubMed  Google Scholar 

  • Power, J. D., Cohen, A. L., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2009). rs-fcMRI networks preferentially link auditory and sensorimotor mouth regions across development from 8-26 years of age. Paper presented at the Society for Neuroscience, Chicago, IL.

  • Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Miezin, F. M., Vogel, A.C., et al. (2010a). The network architecture of functionally defined regions spanning the brain reorganize from a predominantly local architecture in children to a distributed, functional architecture in adults. Paper presented at the Cognitive Neuroscience Society, Montreal, QC, Canada.

  • Power, J. D., Fair, D. A., Schlaggar, B. L., & Petersen, S. E. (2010b). The development of human functional brain networks. Neuron, 67(5), 735–748.

    Article  CAS  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.

    Article  CAS  PubMed  Google Scholar 

  • Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1118–1123.

    Article  CAS  PubMed  Google Scholar 

  • Rubinov, M., & Sporns, O. (2009). Complex network measures of brain connectivity: uses and interpretations. Neuroimage.

  • Saur, D., Schelter, B., Schnell, S., Kratochvil, D., Kupper, H., Kellmeyer, P., et al. (2010). Combining functional and anatomical connectivity reveals brain networks for auditor language comprehension. Neuroimage, 49, 3187–3197.

    Article  PubMed  Google Scholar 

  • Schlaggar, B. L., & McCandliss, B. D. (2007). Development of neural systems for reading. Annual Review of Neuroscience, 30, 475–503.

    Article  CAS  PubMed  Google Scholar 

  • Schlaggar, B. L., Brown, T. T., Lugar, H. M., Visscher, K. M., Miezin, F. M., & Petersen, S. E. (2002). Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296, 1476–1479.

    Article  CAS  PubMed  Google Scholar 

  • Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356.

    Article  CAS  PubMed  Google Scholar 

  • Sepulcre, J., Liu, H., Talukdar, T., Martincorena, I., Yeo, B. T. T., & Buckner, R. L. (2010). The organization of local and distant functional connectivity in the human brain. PLOS Computational Biology, 6(6), e1000808.

    Article  PubMed  Google Scholar 

  • Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., et al. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9, 648–663.

    Article  Google Scholar 

  • Smith, S. M., Miller, K. L., Salimi-Korshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., et al. (in press). Network modeling methods for fMRI. NeuroImage. doi:10.1016/j.neuroimage.2010.08.063

  • Smyser, C. D., Inder, T. E., Shimony, J. S., Hill, J. E., Degnan, A. J., Snyder, A. Z., et al. (2010). Longitudinal analysis of neural network development in preterm infants. Cereb Cortex, epub.

  • Snook, L., Paulson, L.-A., Roy, D., Phillips, L., & Beaulieu, C. (2005). Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage, 26(4), 1164–1173.

    Article  PubMed  Google Scholar 

  • Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24(38), 8223–8231.

    Article  CAS  PubMed  Google Scholar 

  • Sporns, O., & Honey, C. J. (2006). Small worlds inside big brains. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19219–19220.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, M. C., Pearlson, G. D., & Calhoun, V. D. (2009). Changes in the interaction of resting-state neural networks from adolescence to adulthood. Human Brain Mapping, 30(8), 2356–2366.

    Article  PubMed  Google Scholar 

  • Stevens, W. D., Buckner, R. L., & Schacter, D. L. (2010). Correlated low-frequency BOLD fluctuations in the resting human brain are modulated by recent experience in category-preferential visual regions. Cerebral Cortex, 20, 1997–2006.

    Article  PubMed  Google Scholar 

  • Stiles, J. (2008). The fundamentals of brain development: Integrating nature and nurture. Harvard University Press.

  • Stiles, J., Moses, P., Passarotti, A., Dick, F. K., & Buxton, R. (2003). Exploring developmental change in the neural bases of higher cognitive functions: the promise of functional magnetic resonance imaging. Developmental Neuropsychology, 24(2–3), 641–668.

    Article  PubMed  Google Scholar 

  • Supekar, K., Musen, M., & Menon, V. (2009). Development of large-scale functional brain networks in children. PLoS Biology, 7(7), e1000157.

    Article  PubMed  Google Scholar 

  • Supekar, K., Uddin, L. Q., Prater, K., Amin, H., Greicius, M. D., & Menon, V. (2010). Development of functional and structural connectivity within the default mode network in young children. Neuroimage, 52(1), 290–301.

    Article  PubMed  Google Scholar 

  • Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations furing rest are related to memory for recent experiences. Neuron, 65(2), 280–290.

    Article  CAS  PubMed  Google Scholar 

  • Tamm, L., Menon, V., & Reiss, A. L. (2002). Maturation of brain function associated with response inhibition. Journal of the American Academy of Child and Adolescent Psychiatry, 41(10), 1231–1238.

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomic parcellation of the MNI MRI single subject brain. NeuroImage, 15(1), 293–289.

    Google Scholar 

  • Uddin, L. Q., Kelly, A. M., Biswal, B. B., Margulies, D. S., Shehzad, Z., Shaw, D., et al. (2008). Network homogeneity reveals decreased integrity of default-mode network in ADHD. Journal of Neuroscience Methods, 169(1), 249–254.

    Google Scholar 

  • Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D. C., et al. (2007). Intrinsic functional architecture in the anesthetized monkey brain. Nature, 447(7140), 46–47.

    Article  Google Scholar 

  • Vogel, A. C., Church, J. A., Power, J. D., Cohen, A. L., Miezin, F. M., Schlaggar, B. L., et al. (2009). Development of network structure in reading related regions. Paper presented at the Society for Neuroscience, Chicago, IL.

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life (pp. 3–70). Oxford: Blackwell Scientific.

    Google Scholar 

  • Zalesky, A., Fornito, A., Harding, I. A., Cocchi, L., Yucel, M., Pantelis, C., et al. (2010). Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage, 50, 970–983.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Portions of this work were funded by NIH NS61144, NS4624, K02 NS0534425, and R01HD057076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alecia C. Vogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, A.C., Power, J.D., Petersen, S.E. et al. Development of the Brain’s Functional Network Architecture. Neuropsychol Rev 20, 362–375 (2010). https://doi.org/10.1007/s11065-010-9145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-010-9145-7

Keywords

Navigation