Skip to main content

Advertisement

Log in

Extremely Preterm Birth Outcome: A Review of Four Decades of Cognitive Research

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

Premature birth incidence and survival rates are increasing steadily due to advances in obstetric and neonatal intensive care. Those born at the limits of viability are highly at-risk of adverse neurocognitive function over their lifespan, leading to current controversy regarding aggressive resuscitation efforts for these extremely preterm children. However, data from earlier generation cohorts who were born in substantially different eras of neonatal intensive care cannot be relied on to predict outcome of today’s newborn. Our review by the crucial variable of birth cohort year shows a changing developmental trajectory in which today’s extremely preterm survivor is likely to have fewer severe medical complications, better neurological outcomes, and fewer adverse cognitive late effects. Such data further underscore the importance of concurrently considering medical, familial, socioenvironmental, and neurobiological factors in combination with individual neonatal intensive care center protocols when studying outcomes of the preterm child. This complex, interrelated range of factors directly affects the immature, rapidly developing premature brain. However, ongoing surveillance to detect subsequent delay or impairment and to apply interventional strategies early in the developmental course holds promise for further enhancement of functional outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarnoudse-Moens, C. S., Weisglas-Kuperus, N., van Goudoever, J. B., & Oosterlaan, J. (2009). Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics, 124(2), 717–728.

    Article  PubMed  Google Scholar 

  • Adams-Chapman, I., Hansen, N. I., Stoll, B. J., & Higgins, R. (2008). Neurodevelopmental outcome of extremely low birth weight Infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics, 121, e1167–e1177.

    Article  PubMed  Google Scholar 

  • Agustines, L. A., Lin, Y. G., Rumney, P. J., Lu, M. C., Bonebrake, R., Asrat, T., et al. (2000). Outcomes of extremely low-birth-wieight infants between 500 and 750 g. American Journal of Obstetrics and Gynecology, 182, 1113–1116.

    Article  CAS  PubMed  Google Scholar 

  • Ahronovich, M., Baron, I. S., & Litman, F. (2007). Improved outcomes of extremely low birth weight infants. Pediatrics, 119, 1044.

    Article  PubMed  Google Scholar 

  • Allin, M., Matsumoto, H., Santhouse, A. M., Nosarti, C., AlSady, M. H. S., Stewart, A. L., et al. (2001). Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain, 124, 60–66.

    Article  CAS  PubMed  Google Scholar 

  • Allin, M., Henderson, M., Suckling, J., Nosarti, C., Rushe, T., Fearon, P., et al. (2004). Effects of very low birthweight on brain structure in adulthood. Developmental Medicine and Child Neurology, 46, 46–53.

    Article  PubMed  Google Scholar 

  • Allin, M., Salaria, S., Nosarti, C., Wyatt, J., Rifkin, L., & Murray, R. M. (2005). Vermis and lateral lobes of the cerebellum in adolescents born very preterm. NeuroReport, 16, 1821–1824.

    Article  PubMed  Google Scholar 

  • Als, H., Gilkerson, L., Duffy, F. H., McAnulty, G. B., Buehler, D. M., Vandenberg, K., et al. (2003). A three-center, randomized, controlled trial of individualized developmental care for very low birth weight preterm infants: medical, neurodevelopmental, parenting, and caregiving effects. Journal of Developmental and Behavioral Pediatrics: JDBP, 24, 399–408.

    Article  PubMed  Google Scholar 

  • Als, H., Duffy, F. H., McAnulty, G. B., Rivkin, M. J., Vajapeyam, S., Mulkern, R. V., et al. (2004). Early experience alters brain function and structure. Pediatrics, 113, 846–857.

    Article  PubMed  Google Scholar 

  • American College of Obstetricians and Gynecologists. (2002). ACOG practice bulletin 38: perinatal care at the threshold of viability. Obstetrics and Gynecology, 100, 617–624.

    Article  Google Scholar 

  • Anderson, P., & Doyle, L. W. (2003). Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. Journal of the American Medical Association, 289, 3264–3272.

    Article  PubMed  Google Scholar 

  • Anderson, P., & Doyle, L. W. (2004). Executive functioning in school-aged children who were born very preterm or with extremely low birth weight in the 1990s. Pediatrics, 114, 50–57.

    Article  PubMed  Google Scholar 

  • Anderson, V., Jacobs, R., & Harvey, A. S. (2005). Prefrontal lesions and attentional skills in childhood. Journal of the International Neuropsychological Society, 11, 817–831.

    Article  CAS  PubMed  Google Scholar 

  • Ashton, D. M., Lawrence, H. C., 3rd, Adams, N. L., 3rd, & Fleischman, A. R. (2009). Surgeon General’s Conference on the Prevention of Preterm Birth. Obstetrics and Gynecology, 113, 925–930.

    PubMed  Google Scholar 

  • Aylward, G. P., Pfeiffer, S. L., Wright, A., & Verhulst, S. J. (1989). Outcome studies of low birth weight infants published in the last decade: a meta-analysis. Journal of Pediatrics, 115, 515–520.

    Article  CAS  PubMed  Google Scholar 

  • Back, S. A. (2006). Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Mental Retardation and Developmental Disabilities Research Reviews, 12, 129–140.

    Article  PubMed  Google Scholar 

  • Back, S. A., Riddle, A., & McClure, M. M. (2007). Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke, 38(2 Suppl), 724–730.

    Article  PubMed  Google Scholar 

  • Baron, I. S., Ahronovich, M. D., Erickson, K., Gidley Larson, J. C., & Litman, F. R. (2009a). Age-appropriate early school age neurobehavioral outcomes of extremely preterm birth without severe intraventricular hemorrhage: A single center experience. Early Human Development, 85, 191–196.

    Article  Google Scholar 

  • Baron, I. S., Erickson, K., Ahronovich, M., Coulehan, K., Baker, R., & Litman, F. (2009b). Visuospatial and verbal fluency relative deficits in ‘complicated’ late-preterm preschool children. Early Human Development, 85, 751–754.

    Article  Google Scholar 

  • Barrett, R. D., Bennet, L., Davidson, J., Dean, J. M., George, S., Emerald, B. S., et al. (2007). Destruction and reconstruction: hypoxia and the developing brain. Birth Defects Research. Part C: Embryo Today, 81, 163–176.

    Article  CAS  Google Scholar 

  • Barrington, K. J. (2001). The adverse neuro-developmental effects of postnatal steroids in the preterm infant: a systematic review of RCTs. BioMed Central Pediatrics, 1, 1.

    CAS  PubMed  Google Scholar 

  • Bartels, D. B., Kreienbrock, L., Dammann, O., Wenzlaff, P., & Poets, C. F. (2005). Population based study on the outcome of small for gestational age newborns. Archives of Disease in Childhood: Fetal and Neonatal Edition Archive, 90, F53–F59.

    Article  CAS  Google Scholar 

  • Bartha, A. I., Foster-Barber, A., Miller, S. P., Vigneron, D. B., Glidden, D. V., Barkovich, A. J., et al. (2004). Neonatal encephalopathy: association of cytokines with MR spectroscopy and outcome. Pediatric Research, 56, 960–966.

    Article  CAS  PubMed  Google Scholar 

  • Batton, D. G. (2009). Clinical report–Antenatal counseling regarding resuscitation at an extremely low gestational age. Pediatrics, 124, 422–427.

    Article  PubMed  Google Scholar 

  • Behrman, R., & Butler, A. (2007). Preterm birth: causes, consequences, and prevention. Washington, D.C.: National Academies Press.

    Google Scholar 

  • Bhutta, A. T., & Anand, K. J. (2001). Abnormal cognition and behavior in preterm neonates linked to smaller brain volumes. Trends in Neuroscience, 24, 129–130. discussion 131–122.

    Article  CAS  Google Scholar 

  • Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M., & Anand, K. J. (2002). Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. Journal of the American Medical Association, 288, 728–737.

    Article  PubMed  Google Scholar 

  • Bohin, S., Draper, E. S., & Field, D. J. (1999). Health status of a population of infants born before 26 weeks gestation derived from routine data collected between 21 and 27 months post-delivery. Early Human Development, 55, 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Bohm, B., Smedler, A. C., & Forssberg, H. (2004). Impulse control, working memory and other executive functions in preterm children when starting school. Acta Paediatrica, 93, 1363–1371.

    Article  CAS  PubMed  Google Scholar 

  • Bowen, J. R., Gibson, F. L., & Hand, P. J. (2002). Educational outcome at 8 years for children who were born extremely prematurely: a controlled study. Journal of Paediatrics and Child Health, 38, 438–444.

    Article  CAS  PubMed  Google Scholar 

  • Breslau, N., Paneth, N. S., & Lucia, V. C. (2004). The lingering academic deficits of low birth weight children. Pediatrics, 114, 1035–1040.

    Article  PubMed  Google Scholar 

  • Brothwood, M., Wolke, D., Gamsu, H., Benson, J., & Cooper, D. (1986). Prognosis of the very low birthweight baby in relation to gender. Archives of Disease in Childhood, 61, 559–564.

    Article  CAS  PubMed  Google Scholar 

  • Butler, R. W., & Copeland, D. R. (2002). Attentional processes and their remediation in children treated for cancer: a literature review and the development of a therapeutic approach. Journal of the International Neuropsychological Society, 8, 115–124.

    Article  PubMed  Google Scholar 

  • Butler, R. W., Copeland, D. R., Fairclough, D. L., Mulhern, R. K., Katz, E. R., Kazak, A. E., et al. (2008). A multicenter, randomized clinical trial of a cognitive remediation program for childhood survivors of a pediatric malignancy. Journal of Consulting and Clinical Psychology, 76, 367–378.

    Article  PubMed  Google Scholar 

  • Caravale, B., Tozzi, C., Albino, G., & Vicari, S. (2005). Cognitive development in low risk preterm infants at 3–4 years of life. Archives of Disease in Childhood. Fetal and Neonatal Edition, 90, F474–F479.

    Article  CAS  PubMed  Google Scholar 

  • Carmody, D. P., Bendersky, M., Dunn, S. M., DeMarco, J. K., Hegyi, T., Hiatt, M., et al. (2006). Early risk, attention, and brain activation in adolescents born preterm. Child Development, 77, 384–394.

    Article  PubMed  Google Scholar 

  • Castro, L., Yolton, K., Haberman, B., Roberto, N., Hansen, N. I., Ambalavanan, N., et al. (2004). Bias in reported neurodevelopmental outcomes among extremely low birth weight survivors. Pediatrics, 114, 404–410.

    Article  PubMed  Google Scholar 

  • Chapieski, M. L., & Evankovich, K. D. (1997). Behavioral effects of prematurity. Seminars in Perinatology, 21, 221–239.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. H., & Desmond, J. E. (2005). Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage, 24, 332–338.

    Article  PubMed  Google Scholar 

  • Coccia, C., Pezzani, M., Moro, G. E., & Minoli, I. (1992). Management of extremely low-birth-weight infants. Acta Paediatrica. Supplement, 382, 10–12.

    Article  CAS  PubMed  Google Scholar 

  • Cole, C., Hagadorn, J., & Kim, C. (2002). Criteria for determining disability in infants and children: Low birth weight. Evidence report/Technology Assessment No. 70, Publication No. 03-E010. Rockville: Agency for Healthcare Research and Quality, U.S. Department of Health and Human Services.

    Google Scholar 

  • Collaborative Group on Antenatal Steroid Therapy. (1984). Effects of antenatal dexamethasone administration in the infant: long-term follow-up. Journal of Pediatrics, 104, 259–267.

    Article  Google Scholar 

  • Conklin, H. M., Luciana, M., Hooper, C. J., & Yarger, R. S. (2007). Working memory performance in typically developing children and adolescents: behavioral evidence of protracted frontal lobe development. Developmental Neuropsychology, 31, 103–128.

    Article  PubMed  Google Scholar 

  • Conom, D. H., Thomas, C., Evans, J., & Tan, K. I. (2006). Surfactant era (1990–2002) 2-year outcomes of infants less than 1500 g from a Community Level 3 Neonatal Intensive Care Unit. Journal of Perinatology, 26, 605–613.

    Article  PubMed  Google Scholar 

  • Cooke, R. W. (2005). Perinatal and postnatal factors in very preterm infants and subsequent cognitive and motor abilities. Archives of Disease in Childhood. Fetal and Neonatal Edition Archive, 90, F60–F63.

    Article  CAS  Google Scholar 

  • Counsell, S. J., Allsop, J. M., Harrison, M. C., Larkman, D. J., Kennea, N. L., Kapellou, O., et al. (2003). Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics, 112(1 Pt 1), 1–7.

    Article  PubMed  Google Scholar 

  • Dammann, O., & Leviton, A. (2006). Neuroimaging and the prediction of outcomes in preterm infants. The New England Journal of Medicine, 355, 727–729.

    Article  CAS  PubMed  Google Scholar 

  • Dammann, O., Naples, M., Bednarek, F., Shah, B., Kuban, K. C., O’Shea, T. M., et al. (2009). SNAP-II and SNAPPE-II and the risk of structural and functional brain disorders in extremely low gestational age newborns: The ELGAN study. Neonatology, 97, 71–82.

    Article  PubMed  Google Scholar 

  • Daniel, L. M., Lim, S. B., & Clarke, L. (2003). Eight-year outcome of very-low-birth-weight infants born in KK hospital. Annals of the Academy of Medicine, Singapore, 32, 354–361.

    CAS  PubMed  Google Scholar 

  • de Graaf-Peters, V. B., & Hadders-Algra, M. (2006). Ontogeny of the human central nervous system: what is happening when? Early Human Development, 82, 257–266.

    Article  PubMed  Google Scholar 

  • De Groote, I., Vanhaesebrouck, P., Bruneel, E., Dom, L., Durein, I., Hasaerts, D., et al. (2007). Outcome at 3 years of age in a population-based cohort of extremely preterm infants. Obstetrics and Gynecology, 110, 855–864.

    Article  PubMed  Google Scholar 

  • de Haan, M., & Johnson, M. (2003). Mechanisms and theories of brain development. In M. de Haan & M. Johnson (Eds.), The cognitive neuroscience of development (pp. 1–18). New York: Psychology Press.

    Google Scholar 

  • Delobel-Ayoub, M., Kaminski, M., Marret, S., Burguet, A., Marchand, L., N’Guyen, S., et al. (2006). Behavioral outcome at 3 years of age in very preterm infants: the EPIPAGE study. Pediatrics, 117, 1996–2005.

    Article  PubMed  Google Scholar 

  • Doyle, L. W. (2004). Changing availability of neonatal intensive care for extremely low birthweight infants in Victoria over two decades. The Medical Journal of Australia, 181, 136–139.

    PubMed  Google Scholar 

  • Doyle, L. W., Permezel, M., Ford, G. W., Knoches, A. M., Rickards, A. L., Kelly, E. A., et al. (1994). The obstetrician and the extremely immature fetus (24–26 weeks): outcome to 5 years of age. The Australian & New Zealand Journal of Obstetrics & Gynaecology, 34, 421–424.

    Article  CAS  Google Scholar 

  • Drotar, D., Hack, M., Taylor, G., Schluchter, M., Andreias, L., & Klein, N. (2006). The impact of extremely low birth weight on the families of school-aged children. Pediatrics, 117, 2006–2013.

    Article  PubMed  Google Scholar 

  • Dyet, L. E., Kennea, N., Counsell, S. J., Maalouf, E. F., Ajayi-Obe, M., Duggan, P. J., et al. (2006). Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics, 118, 536–548.

    Article  PubMed  Google Scholar 

  • Edgin, J. O., Inder, T. E., Anderson, P. J., Hood, K. M., Clark, C. A., & Woodward, L. J. (2008). Executive functioning in preschool children born very preterm: Relationship with early white matter pathology. Journal of the International Neuropsychological Society, 14, 90–101.

    Article  PubMed  Google Scholar 

  • Ehrenkranz, R. A., Dusick, A. M., Vohr, B. R., Wright, L. L., Wrage, L. A., & Poole, W. K. (2006). Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics, 117, 1253–1261.

    Article  PubMed  Google Scholar 

  • Eichenwald, E. C., & Stark, A. R. (2008). Management and outcomes of very low birth weight. The New England Journal of Medicine, 358, 1700–1711.

    Article  CAS  PubMed  Google Scholar 

  • Emgard, M., Paradisi, M., Pirondi, S., Fernandez, M., Giardino, L., & Calza, L. (2006). Prenatal glucocorticoid exposure affects learning and vulnerability of cholinergic neurons. Neurobiology of Aging, 28, 112–121.

    Article  PubMed  CAS  Google Scholar 

  • Emsley, H. C., Wardle, S. P., Sims, D. G., Chiswick, M. L., & D’Souza, S. W. (1998). Increased survival and deteriorating developmental outcome in 23 to 25 week old gestation infants, 1990–4 compared with 1984–9. Archives of Disease in Childhood. Fetal and Neonatal Edition Archive, 78, F99–F104.

    Article  CAS  Google Scholar 

  • Engle, W. A. (2004). Age terminology during the perinatal period. Pediatrics, 114, 1362–1364.

    Article  PubMed  Google Scholar 

  • Engle, W. A., Tomashek, K. M., & Wallman, C. (2007). “Late-preterm” infants: a population at risk. Pediatrics, 120, 1390–1401.

    Article  PubMed  Google Scholar 

  • Farooqi, A., Hagglof, B., Sedin, G., Gothefors, L., & Serenius, F. (2007). Mental health and social competencies of 10- to 12-year-old children born at 23 to 25 weeks of gestation in the 1990s: a Swedish national prospective follow-up study. Pediatrics, 120, 118–133.

    Article  PubMed  Google Scholar 

  • Fawke, J. (2007). Neurological outcomes following preterm birth. Seminars in Fetal & Neonatal Medicine, 12, 374–382.

    Article  Google Scholar 

  • Ferrara, T. B., Hoekstra, R. E., Couser, R. J., Gaziano, E. P., Calvin, S. E., Payne, N. R., et al. (1994). Survival and follow-up of infants born at 23 to 26 weeks of gestational age: effects of surfactant therapy. Journal of Pediatrics, 124, 119–124.

    Article  CAS  PubMed  Google Scholar 

  • Ferriero, D. M. (2004). Neonatal brain injury. The New England Journal of Medicine, 351, 1985–1995.

    Article  CAS  PubMed  Google Scholar 

  • Ferriero, D. M. (2009). Controversies and advances in neonatal neurology: introduction. Pediatric Neurology, 40, 145–146.

    Article  PubMed  Google Scholar 

  • Fily, A., Pierrat, V., Delporte, V., Breart, G., & Truffert, P. (2006). Factors associated with neurodevelopmental outcome at 2 years after very preterm birth: the population-based Nord-Pas-de-Calais EPIPAGE cohort. Pediatrics, 117, 357–366.

    Article  PubMed  Google Scholar 

  • Flodmark, O., & Barkovich, A. J. (2002). Imaging of the infant brain. In H. Lagercrantz, M. Hanson, P. Evrard, & C. Rodeck (Eds.), The newborn brain: Neuroscience and clinical applications (pp. 289–316). Cambridge: Cambridge University Press.

    Google Scholar 

  • Foster-Cohen, S., Edgin, J. O., Champion, P. R., & Woodward, L. J. (2007). Early delayed language development in very preterm infants: evidence from the MacArthur-Bates CDI. Journal of Child Language, 34, 655–675.

    Article  PubMed  Google Scholar 

  • Gargus, R. A., Vohr, B. R., Tyson, J. E., High, P., Higgins, R. D., Wrage, L. A., et al. (2009). Unimpaired outcomes for extremely low birth weight infants at 18 to 22 months. Pediatrics, 124, 112–121.

    Article  PubMed  Google Scholar 

  • Gianni, M. L., Picciolini, O., Vegni, C., Gardon, L., Fumagalli, M., & Mosca, F. (2007). Twelve-month neurofunctional assessment and cognitive performance at 36 months of age in extremely low birth weight infants. Pediatrics, 120, 1012–1019.

    Article  PubMed  Google Scholar 

  • Gidley Larson, J. C., Baron, I. S., Ahronovich, M., & Iamipetro, M. (2010). Birth below 500 grams. In J. Morgan, I. S. Baron, & J. Ricker (Eds.), Casebook of clinical neuropsychology. New York: Oxford University Press.

    Google Scholar 

  • Gimenez, M., Junque, C., Narberhaus, A., Caldu, X., Salgado-Pineda, P., Bargallo, N., et al. (2004). Hippocampal gray matter reduction associates with memory deficits in adolescents with history of prematurity. Neuroimage, 23, 869–877.

    Article  PubMed  Google Scholar 

  • Gimenez, M., Junque, C., Narberhaus, A., Botet, F., Bargallo, N., & Mercader, J. M. (2006). Correlations of thalamic reductions with verbal fluency impairment in those born prematurely. NeuroReport, 17, 463–466.

    Article  PubMed  Google Scholar 

  • Gimenez, M., Soria-Pastor, S., Junque, C., Caldu, X., Narberhaus, A., Botet, F., et al. (2008). Proton magnetic resonance spectroscopy reveals medial temporal metabolic abnormalities in adolescents with history of preterm birth. Pediatric Research, 64, 572–577.

    Article  CAS  PubMed  Google Scholar 

  • Gross, S. J., Anbar, R. D., & Mettelman, B. B. (2005). Follow-up at 15 years of preterm infants from a controlled trial of moderately early dexamethasone for the prevention of chronic lung disease. Pediatrics, 115, 681–687.

    Article  PubMed  Google Scholar 

  • Grunau, R. E., Whitfield, M. F., & Davis, C. (2002). Pattern of learning disabilities in children with extremely low birth weight and broadly average intelligence. Archives of Pediatrics & Adolescent Medicine, 156, 615–620.

    Google Scholar 

  • Hack, M., & Fanaroff, A. A. (1989). Outcomes of extremely-low-birth-weight infants between 1982 and 1988. The New England Journal of Medicine, 321, 1642–1647.

    Article  CAS  PubMed  Google Scholar 

  • Hack, M., & Fanaroff, A. A. (1999). Outcomes of children of extremely low birthweight and gestational age in the 1990’s. Early Human Development, 53, 193–218.

    Article  CAS  PubMed  Google Scholar 

  • Hack, M., Taylor, H. G., Klein, N., Eiben, R., Schatschneider, C., & Mercuri-Minich, N. (1994). School-age outcomes in children with birth weights under 750 g. The New England Journal of Medicine, 331, 753–759.

    Article  CAS  PubMed  Google Scholar 

  • Hack, M., Friedman, H., & Fanaroff, A. A. (1996). Outcomes of extremely low birth weight infants. Pediatrics, 98, 931–937.

    CAS  PubMed  Google Scholar 

  • Hack, M., Taylor, H. G., Klein, N., & Minich, N. (2000a). Functional limitations and special health care needs of 10- to 14-year-old children weighing less than 750 grams at birth. Pediatrics, 106, 554–559.

    Article  CAS  Google Scholar 

  • Hack, M., Wilson-Costello, D., Friedman, H., Taylor, H. G., Schluchter, M., & Fanaroff, A. A. (2000b). Neurodevelopment and predictors of outcomes of children with birth weights of less than 1000 g. Archives of Pediatrics & Adolescent Medicine, 154, 725–731.

    CAS  Google Scholar 

  • Hack, M., Taylor, H. G., Drotar, D., Schluchter, M., Cartar, L., Andreias, L., et al. (2005). Chronic conditions, functional limitations, and special health care needs of school-aged children born with extremely low-birth-weight in the 1990s. Journal of the American Medical Association, 294, 318–325.

    Article  CAS  PubMed  Google Scholar 

  • Hakansson, S., Farooqi, A., Holmgren, P. A., Serenius, F., & Hogberg, U. (2004). Proactive management promotes outcome in extremely preterm infants: A population-based comparison of two perinatal management strategies. Pediatrics, 114, 58–64.

    Article  PubMed  Google Scholar 

  • Hall, A., McLeod, A., Counsell, C., Thomson, L., & Mutch, L. (1995). School attainment, cognitive ability and motor function in a total Scottish very-low-birthweight population at eight years: a controlled study. Developmental Medicine and Child Neurology, 37, 1037–1050.

    Article  CAS  PubMed  Google Scholar 

  • Halliday, H. L. (2008). Surfactants: past, present and future. Journal of Perinatology, 28(Suppl 1), S47–S56.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, B. E., Martin, J. A., & Ventura, S. J. (2006). Births: preliminary data for 2005. National Vital Statistics Reports, 55, 1–18.

    Google Scholar 

  • Hamilton, B. E., Martin, J. A., & Ventura, S. J. (2009). Births: Preliminary data for 2007. National Vital Statistics Reports, 57.

  • Hamrick, S. E. G., Miller, S. P., Leonard, C., Glidden, D. V., Goldstein, R., Ramaswamy, V., et al. (2004). Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: The role of cystic periventricular leukomalacia. The Journal of Pediatrics, 145, 593–599.

    Article  PubMed  Google Scholar 

  • Hansen, B. M., & Greisen, G. (2004). Is improved survival of very-low-birthweight infants in the 1980s and 1990s associated with increasing intellectual deficit in surviving children? Developmental Medicine and Child Neurology, 46, 812–815.

    Article  PubMed  Google Scholar 

  • Hansen-Pupp, I., Hallin, A. L., Hellstrom-Westas, L., Cilio, C., Berg, A. C., Stjernqvist, K., et al. (2008). Inflammation at birth is associated with subnormal development in very preterm infants. Pediatric Research, 64, 183–188.

    Article  PubMed  Google Scholar 

  • Harvey, J. M., O’Callaghan, M. J., & Mohay, H. (1999). Executive function of children with extremely low birthweight: a case control study. Developmental Medicine and Child Neurology, 41, 292–297.

    Article  CAS  PubMed  Google Scholar 

  • Hille, E. T., den Ouden, A. L., Bauer, L., van den Oudenrijn, C., Brand, R., & Verloove-Vanhorick, S. P. (1994). School performance at nine years of age in very premature and very low birth weight infants: perinatal risk factors and predictors at five years of age. Collaborative Project on Preterm and Small for Gestational Age (POPS) Infants in The Netherlands. The Journal of Pediatrics, 125, 426–434.

    Article  CAS  PubMed  Google Scholar 

  • Hille, E. T., den Ouden, A. L., Saigal, S., Wolke, D., Lambert, M., Whitaker, A., et al. (2001). Behavioural problems in children who weigh 1000 g or less at birth in four countries. Lancet, 357, 1641–1643.

    Article  CAS  PubMed  Google Scholar 

  • Hille, E. T., Weisglas-Kuperus, N., van Goudoever, J. B., Jacobusse, G. W., Ens-Dokkum, M. H., de Groot, L., et al. (2007). Functional outcomes and participation in young adulthood for very preterm and very low birth weight infants: the Dutch Project on Preterm and Small for Gestational Age Infants at 19 years of age. Pediatrics, 120, e587–e595.

    Article  PubMed  Google Scholar 

  • Hintz, S. R., Kendrick, D. E., Vohr, B. R., Poole, W. K., & Higgins, R. D. (2005). Changes in neurodevelopmental outcomes at 18 to 22 month’s corrected age among infants of less than 25 weeks’ gestational age born in 1993–1999. Pediatrics, 115, 1645–1651.

    Google Scholar 

  • Hoekstra, R. E., Ferrara, T. B., Couser, R. J., Payne, N. R., & Connett, J. E. (2004). Survival and long-term neurodevelopmental outcome of extremely premature infants born at 23–26 weeks’ gestational age at a tertiary center. Pediatrics, 113(1 Pt 1), e1–e6.

    Article  PubMed  Google Scholar 

  • Hoff Esbjorn, B., Hansen, B. M., Greisen, G., & Mortensen, E. L. (2006). Intellectual development in a danish cohort of prematurely born preschool children: specific or general difficulties? Journal of Developmental and Behavioral Pediatrics, 27, 477–484.

    Article  PubMed  Google Scholar 

  • Huang, B. Y., & Castillo, M. (2008). Hypoxic-ischemic brain injury: imaging findings from birth to adulthood. Radiographics, 28, 417–439. quiz 617.

    Article  PubMed  Google Scholar 

  • Inder, T. E., & Volpe, J. J. (2000). Mechanisms of perinatal brain injury. Seminars in Neonatology, 5, 3–16.

    Article  CAS  PubMed  Google Scholar 

  • International Neonatal Network, S. N. C., Nurses Collaborative Study Group, (2000). Risk adjusted and population based studies of the outcome for high risk infants in Scotland and Australia: Archives of Disease in Childhood: Fetal and Neonatal Edition, 82, 118–123.

  • Isaacs, E. B., Lucas, A., Chong, W. K., Wood, S. J., Johnson, C. L., Marshall, C., et al. (2000). Hippocampal volume and everyday memory in children of very low birth weight. Pediatric Research, 47, 713–720.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, D. D., Chang, E., & Singh, I. (2009). Neuroprotective interventions: is it too late? Journal of Child Neurology, 24, 1212–1219.

    Article  PubMed  Google Scholar 

  • Jeyaseelan, D., O’Callaghan, M., Neulinger, K., Shum, D., & Burns, Y. (2006). The association between early minor motor difficulties in extreme low birth weight infants and school age attentional difficulties. Early Human Development, 82, 249–255.

    Google Scholar 

  • Jobe, A. H. (2004). Postnatal corticosteroids for preterm infants—do what we say, not what we do. The New England Journal of Medicine, 350, 1349–1351.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, S., Fawke, J., Hennessy, E., Rowell, V., Thomas, S., Wolke, D., et al. (2009). Neurodevelopmental disability through 11 years of age in children born before 26 weeks of gestation. Pediatrics, 124, e249–e257.

    Article  PubMed  Google Scholar 

  • Johnston, M. V. (2009). Plasticity in the developing brain: implications for rehabilitation. Developmental Disabilities Research Reviews, 15, 94–101.

    Article  PubMed  Google Scholar 

  • Kaaresen, P. I., Ronning, J. A., Ulvund, S. E., & Dahl, L. B. (2006). A randomized, controlled trial of the effectiveness of an early-intervention program in reducing parenting stress after preterm birth. Pediatrics, 118, e9–e19.

    Article  PubMed  Google Scholar 

  • Kaempf, J. W., Tomlinson, M., Arduza, C., Anderson, S., Campbell, B., Ferguson, L. A., et al. (2006). Medical staff guidelines for periviability pregnancy counseling and medical treatment of extremely premature infants. Pediatrics, 117, 22–29.

    Article  PubMed  Google Scholar 

  • Kesler, S. R., Ment, L. R., Vohr, B., Pajot, S. K., Schneider, K. C., Katz, K. H., et al. (2004). Volumetric analysis of regional cerebral development in preterm children. Pediatric Neurology, 31, 318–325.

    Article  PubMed  Google Scholar 

  • Kesler, S. R., Vohr, B., Schneider, K. C., Katz, K. H., Makuch, R. W., Reiss, A. L., et al. (2006). Increased temporal lobe gyrification in preterm children. Neuropsychologia, 44, 445–453.

    Article  PubMed  Google Scholar 

  • Kesler, S. R., Reiss, A. L., Vohr, B., Watson, C., Schneider, K. C., Katz, K. H., et al. (2008). Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. Journal of Pediatrics, 152, 513–520. 520 e511.

    Article  PubMed  Google Scholar 

  • Khwaja, O., & Volpe, J. J. (2008). Pathogenesis of cerebral white matter injury of prematurity. Archives of Disease in Childhood. Fetal and Neonatal Edition, 93, F153–F161.

    Article  CAS  PubMed  Google Scholar 

  • Kilbride, H. W., Thorstad, K., & Daily, D. K. (2004). Preschool outcome of less than 801-gram preterm infants compared with full-term siblings. Pediatrics, 113, 742–747.

    Article  PubMed  Google Scholar 

  • Kleberg, A., Westrup, B., & Stjernqvist, K. (2000). Developmental outcome, child behaviour and mother-child interaction at 3 years of age following Newborn Individualized Developmental Care and Intervention Program (NIDCAP) intervention. Early Human Development, 60, 123–135.

    Article  CAS  PubMed  Google Scholar 

  • Kleberg, A., Westrup, B., Stjernqvist, K., & Lagercrantz, H. (2002). Indications of improved cognitive development at one year of age among infants born very prematurely who received care based on the Newborn Individualized Developmental Care and Assessment Program (NIDCAP). Early Human Development, 68, 83–91.

    Article  PubMed  Google Scholar 

  • Koeppen-Schomerus, G., Eley, T. C., Wolke, D., Gringras, P., & Plomin, R. (2000). The interaction of prematurity with genetic and environmental influences on cognitive development in twins. Journal of Pediatrics, 137, 527–533.

    Article  CAS  PubMed  Google Scholar 

  • Kok, J. H., den Ouden, A. L., Verloove-Vanhorick, S. P., & Brand, R. (1998). Outcome of very preterm small for gestational age infants: the first nine years of life. British Journal of Obstetrics and Gynecology, 105, 162–168.

    Article  CAS  Google Scholar 

  • Korogi, Y., Takahashi, M., Sumi, M., Hirai, T., Sakamoto, Y., Ikushima, I., et al. (1996). MR signal intensity of the perirolandic cortex in the neonate and infant. Paediatric Neuroradiology, 38, 578–584.

    Article  CAS  Google Scholar 

  • Lamont, R. F. (2003). Looking to the future. BJOG: An International Journal of Obstetrics And Gynaecology, 110(Suppl 20), 131–135.

    Google Scholar 

  • Landry, S. H., Smith, K. E., & Swank, P. R. (2006). Responsive parenting: establishing early foundations for social, communication, and independent problem-solving skills. Developmental Psychology, 42, 627–642.

    Article  PubMed  Google Scholar 

  • Laptook, A. R., O’Shea, M., Shankaran, S., Bhaskar, B., & Network, N. N. (2005). Adverse neurodevelopmental outcomes among extremely low birth weight infants with a normal head ultrasound: prevalence and antecedents. Pediatrics, 115, 673–680.

    Article  PubMed  Google Scholar 

  • Larroque, B., Ancel, P. Y., Marret, S., Marchand, L., Andre, M., Arnaud, C., et al. (2008). Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): a longitudinal cohort study. Lancet, 371, 813–820.

    Article  PubMed  Google Scholar 

  • Lefebvre, F., Bard, H., Veilleux, A., & Martel, C. (1988). Outcome at school age of children with birthweights of 1000 grams or less. Developmental Medicine and Child Neurology, 30, 170–180.

    Article  CAS  PubMed  Google Scholar 

  • Limperopoulos, C., Soul, J. S., Gauvreau, K., Huppi, P. S., Warfield, S. K., Bassan, H., et al. (2005). Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics, 115, 688–695.

    Article  PubMed  Google Scholar 

  • Lodygensky, G. A., Rademaker, K., Zimine, S., Gex-Fabry, M., Lieftink, A. F., Lazeyras, F., et al. (2005). Structural and functional brain development after hydrocortisone treatment for neonatal chronic lung disease. Pediatrics, 116, 1–7.

    Article  PubMed  Google Scholar 

  • Lorenz, J. M., Wooliever, D. E., Jetton, J. R., & Paneth, N. (1998). A quantitative review of mortality and developmental disability in extremely premature newborns. Archives of Pediatrics & Adolescent Medicine, 152, 425–435.

    CAS  Google Scholar 

  • Luciana, M., Conklin, H. M., Hooper, C. J., & Yarger, R. S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76, 697–712.

    Article  PubMed  Google Scholar 

  • Lumley, J., Kitchen, W. H., Roy, R. N., Yu, V. Y., & Drew, J. H. (1988). The survival of extremely-low-birthweight infants in Victoria: 1982–1985. The Medical Journal of Australia, 149(242), 244–246.

    Google Scholar 

  • Luu, T. M., Ment, L. R., Schneider, K. C., Katz, K. H., Allan, W. C., & Vohr, B. R. (2009). Lasting effects of preterm birth and neonatal brain hemorrhage at 12 years of age. Pediatrics, 123, 1037–1044.

    Article  PubMed  Google Scholar 

  • Maayan-Metzger, A., Naor, N., & Sirota, L. (2002). Comparative outcome study between triplet and singleton preterm newborns. Acta Paediatrica, 91, 1208–1211.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald, H. (2002). Perinatal care at the threshold of viability. Pediatrics, 110, 1024–1027.

    Article  PubMed  Google Scholar 

  • Maguire, C. M., Walther, F. J., Sprij, A. J., Le Cessie, S., Wit, J. M., & Veen, S. (2009). Effects of individualized developmental care in a randomized trial of preterm infants <32 weeks. Pediatrics, 124, 1021–1030.

    Article  PubMed  Google Scholar 

  • Malaeb, S., & Dammann, O. (2009). Fetal inflammatory response and brain injury in the preterm newborn. Journal of Child Neurology, 24(9), 1119–1126.

    Article  PubMed  Google Scholar 

  • Markestad, T., Kaaresen, P. I., Ronnestad, A., Reigstad, H., Lossius, K., Medbo, S., et al. (2005). Early death, morbidity, and need of treatment among extremely premature infants. Pediatrics, 115, 1289–1298.

    Article  PubMed  Google Scholar 

  • Marlow, N., Wolke, D., Bracewell, M. A., & Samara, M. (2005). Neurologic and developmental disability at six years of age after extremely preterm birth. The New England Journal of Medicine, 352, 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Martin, J. A., Hamilton, B. E., Sutton, P. D., Ventura, S. J., Menacker, F., & Munson, M. L. (2005). Births: final data for 2003. National Vital Statistics Reports, 54, 1–116.

    Google Scholar 

  • Martin, J. A., Kung, H. C., Mathews, T. J., Hoyert, D. L., Strobino, D. M., Guyer, B., et al. (2008). Annual summary of vital statistics: 2006. Pediatrics, 121, 788–801.

    Article  PubMed  Google Scholar 

  • Martinussen, M., Flanders, D. W., Fischl, B., Busa, E., Lohaugen, G. C., Skranes, J., et al. (2009). Segmental brain volumes and cognitive and perceptual correlates in 15-year-old adolescents with low birth weight. Journal of Pediatrics, 155(848–853), e841.

    Google Scholar 

  • McCormick, M. C. (1994). Survival of very tiny babies-good news and bad news. The New England Journal of Medicine, 331, 802–803.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, M. C., Brooks-Gunn, J., Buka, S. L., Goldman, J., Yu, J., Salganik, M., et al. (2006). Early intervention in low birth weight premature infants: results at 18 years of age for the Infant Health and Development Program. Pediatrics, 117, 771–780.

    Article  PubMed  Google Scholar 

  • McQuillen, P. S., & Ferriero, D. M. (2004). Selective vulnerability in the developing central nervous system. Pediatric Neurology, 30, 227–235.

    Article  PubMed  Google Scholar 

  • Ment, L. R., Peterson, B. S., Meltzer, J. A., Vohr, B., Allan, W., Katz, K. H., et al. (2006). A functional magnetic resonance imaging study of the long-term influences of early indomethacin exposure on language processing in the brains of prematurely born children. Pediatrics, 118, 961–970.

    Article  PubMed  Google Scholar 

  • Ment, L. R., Kesler, S., Vohr, B., Katz, K. H., Baumgartner, H., Schneider, K. C., et al. (2009). Longitudinal brain volume changes in preterm and term control subjects during late childhood and adolescence. Pediatrics, 123, 503–511.

    Article  PubMed  Google Scholar 

  • Meyer-Bahlburg, H. F., Dolezal, C., Baker, S. W., Carlson, A. D., Obeid, J. S., & New, M. I. (2004). Cognitive and motor development of children with and without congenital adrenal hyperplasia after early-prenatal dexamethasone. The Journal of Clinical Endocrinology and Metabolism, 89, 610–614.

    Article  CAS  PubMed  Google Scholar 

  • Mikkola, K., Ritari, N., Tommiska, V., Salokorpi, T., Lehtonen, L., Tammela, O., et al. (2005). Neurodevelopmental outcome at 5 years of age of a national cohort of extremely low birth weight infants who were born in 1996–1997. Pediatrics, 116, 1391–1400.

    Article  PubMed  Google Scholar 

  • Msall, M. E. (2005). Measuring functional skills in preschool children at risk for neurodevelopmental disabilities. Mental Retardation and Developmental Disabilities Research Reviews, 11, 263–273.

    Article  PubMed  Google Scholar 

  • Msall, M. E., & Park, J. J. (2008). The spectrum of behavioral outcomes after extreme prematurity: regulatory, attention, social, and adaptive dimensions. Seminars in Perinatology, 32, 42–50.

    Article  PubMed  Google Scholar 

  • Msall, M. E., Phelps, D. L., Hardy, R. J., Dobson, V., Quinn, G. E., Summers, C. G., et al. (2004). Educational and social competencies at 8 years in children with threshold retinopathy of prematurity in the CRYO-ROP multicenter study. Pediatrics, 113, 790–799.

    Article  PubMed  Google Scholar 

  • Mulhern, R. K., Hancock, J., Fairclough, D., & Kun, L. (1992). Neuropsychological status of children treated for brain tumors: a critical review and integrative analysis. Medical and Pediatric Oncology, 20, 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Neubauer, A. P., Voss, W., & Kattner, E. (2008). Outcome of extremely low birth weight survivors at school age: The influence of perinatal parameters on neurodevelopment. European Journal of Pediatrics, 167, 87–95.

    Article  PubMed  Google Scholar 

  • Nickel, R. E., Bennett, F. C., & Lamson, F. N. (1982). School performance of children with birth weights of 1,000 g or less. Amercan Journal of Diseases of Children, 136, 105–110.

    CAS  Google Scholar 

  • Nosarti, C., Al-Asady, M. H., Frangou, S., Stewart, A. L., Rifkin, L., & Murray, R. M. (2002). Adolescents who were born very preterm have decreased brain volumes. Brain, 125(Pt 7), 1616–1623.

    Article  PubMed  Google Scholar 

  • Nosarti, C., Rushe, T. M., Woodruff, P. W., Stewart, A. L., Rifkin, L., & Murray, R. M. (2004). Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain, 127(Pt 9), 2080–2089.

    Article  PubMed  Google Scholar 

  • Nosarti, C., Giouroukou, E., Healy, E., Rifkin, L., Walshe, M., Reichenberg, A., et al. (2008). Grey and white matter distribution in very preterm adolescents mediates neurodevelopmental outcome. Brain, 131(Pt 1), 205–217.

    PubMed  Google Scholar 

  • Okazaki, K., Nishida, A., Kato, M., Kozawa, K., Uga, N., & Kimura, H. (2006). Elevation of cytokine concentrations in asphyxiated neonates. Biology of the Neonate, 89, 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Okereafor, A., Allsop, J., Counsell, S. J., Fitzpatrick, J., Azzopardi, D., Rutherford, M. A., et al. (2008). Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics, 121, 906–914.

    Article  PubMed  Google Scholar 

  • O’Shea, M. (2008). Cerebral palsy. Seminars in Perinatology, 32, 35–41.

    Article  PubMed  Google Scholar 

  • O’Shea, T. M., Klinepeter, K. L., Goldstein, D. J., Jackson, B. W., & Dillard, R. G. (1997). Survival and developmental disability in infants with birth weights of 501 to 800 grams, born between 1979 and 1994. Pediatrics, 100, 982–986.

    Article  PubMed  Google Scholar 

  • O’Shea, T. M., Washburn, L. K., Nixon, P. A., & Goldstein, D. J. (2007). Follow-up of a randomized, placebo-controlled trial of dexamethasone to decrease the duration of ventilator dependency in very low birth weight infants: neurodevelopmental outcomes at 4 to 11 years of age. Pediatrics, 120, 594–602.

    Article  PubMed  Google Scholar 

  • Papile, L.-A., Burstein, J., Burstein, R., & Koffler, H. (1978). Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weight less than 1500 g. Journal of Pediatrics, 92, 529–534.

    Article  CAS  PubMed  Google Scholar 

  • Patra, K., Wilson-Costello, D., Taylor, H. G., Mercuri-Minich, N., & Hack, M. (2006). Grades I–II intraventricular hemorrhage in extremely low birth weight infants: Effects on neurodevelopment. Journal of Pediatrics, 149, 169–173.

    Article  PubMed  Google Scholar 

  • Peters, K. L., Rosychuk, R. J., Hendson, L., Cote, J. J., McPherson, C., & Tyebkhan, J. M. (2009). Improvement of short- and long-term outcomes for very low birth weight infants: Edmonton NIDCAP trial. Pediatrics, 124, 1009–1020.

    Article  PubMed  Google Scholar 

  • Peterson, B. S., Vohr, B. R., Staib, L. H., Cannistraci, C. J., Dolberg, A., Schneider, K. C., et al. (2000). Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. Journal of the American Medical Association, 284, 1939–1947.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, B. S., Anderson, A. W., Ehrenkranz, R., Staib, L. H., Tageldin, M., Colson, E., et al. (2003). Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics, 111(5 Pt 1), 939–948.

    Article  PubMed  Google Scholar 

  • Piecuch, R. E., Leonard, C. H., Cooper, B. A., Kilpatrick, S. J., Schlueter, M. A., & Sola, A. (1997). Outcome of infants born at 24–26 weeks’ gestation: II. Neurodevelopmental outcome. Obstetrics and Gynecology, 90, 809–814.

    Article  CAS  PubMed  Google Scholar 

  • Portnoy, S., Callias, M., Wolke, D., & Gamsu, H. (1988). Five-year follow-up study of extremely low-birthweight infants. Developmental Medicine and Child Neurology, 30, 590–598.

    Article  CAS  PubMed  Google Scholar 

  • Raz, S., Debastos, A. K., Newman, J. B., & Batton, D. (2009). Extreme prematurity and neuropsychological outcome in the preschool years. Journal of the International Neuropsychological Society, 1–11

  • Reiss, A. L., Kesler, S. R., Vohr, B., Duncan, C. C., Katz, K. H., Pajot, S., et al. (2004). Sex differences in cerebral volumes of 8-year-olds born preterm. Journal of Pediatrics, 145, 242–249.

    Article  PubMed  Google Scholar 

  • Rezaie, P., & Dean, A. (2002). Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology, 22, 106–132.

    Article  PubMed  Google Scholar 

  • Rijken, M., Stoelhorst, G. M., Martens, S. E., van Zwieten, P. H., Brand, R., Wit, J. M., et al. (2003). Mortality and neurologic, mental, and psychomotor development at 2 years in infants born less than 27 weeks’ gestation: the Leiden follow-up project on prematurity. Pediatrics, 112, 351–358.

    Article  PubMed  Google Scholar 

  • Riley, K., Roth, S., Sellwood, M., & Wyatt, J. S. (2008). Survival and neurodevelopmental morbidity at 1 year of age following extremely preterm delivery over a 20-year period: a single centre cohort study. Acta Paediatrica, 97, 159–165.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, G., Howard, K., Spittle, A. J., Brown, N. C., Anderson, P. J., & Doyle, L. W. (2008). Rates of early intervention services in very preterm children with developmental disabilities at age 2 years. Journal of Paediatrics and Child Health, 44, 276–280.

    Article  PubMed  Google Scholar 

  • Roth, S. C., Baudin, J., McCormick, D. C., Edwards, A. D., Townsend, J., Stewart, A. L., et al. (1993). Relation between ultrasound appearance of the brain of very preterm infants and neurodevelopmental impairment at eight years. Developmental Medicine and Child Neurology, 35, 755–768.

    Article  CAS  PubMed  Google Scholar 

  • Rushe, T. M., Rifkin, L., Stewart, A. L., Townsend, J. P., Roth, S. C., Wyatt, J. S., et al. (2001). Neuropsychological outcome at adolescence of very preterm birth and its relation to brain structure. Developmental Medicine and Child Neurology, 43, 226–233.

    Article  CAS  PubMed  Google Scholar 

  • Saigal, S., & Doyle, L. W. (2008). An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet, 371, 261–269.

    Article  PubMed  Google Scholar 

  • Saigal, S., Hoult, L. A., Streiner, D. L., Stoskopf, B. L., & Rosenbaum, P. L. (2000). School difficulties at adolescence in a regional cohort of children who were extremely low birth weight. Pediatrics, 105, 325–331.

    Article  CAS  PubMed  Google Scholar 

  • Saigal, S., den Ouden, L., Wolke, D., Hoult, L., Paneth, N., Streiner, D. L., et al. (2003). School-age outcomes in children who were extremely low birth weight from four international population-based cohorts. Pediatrics, 112, 943–950.

    Article  PubMed  Google Scholar 

  • Saigal, S., Stoskopf, B., Streiner, D., Boyle, M., Pinelli, J., Paneth, N., et al. (2006). Transition of extremely low-birth-weight infants from adolescence to young adulthood: comparison with normal birth-weight controls. Journal of the American Medical Association, 295, 667–675.

    Article  CAS  PubMed  Google Scholar 

  • Selzer, S. C., Lindgren, S. D., & Blackman, J. A. (1992). Long-term neuropsychological outcome of high risk infants with intracranial hemorrhage. Journal of Pediatric Psychology, 17, 407–422.

    Article  CAS  PubMed  Google Scholar 

  • Sen, E., & Levison, S. W. (2006). Astrocytes and developmental white matter disorders. Mental Retardation and Developmental Disabilities Research Reviews, 12, 97–104.

    Article  PubMed  Google Scholar 

  • Shankaran, S., Johnson, Y., Langer, J. C., Vohr, B. R., Fanaroff, A. A., Wright, L. L., et al. (2004). Outcome of extremely-low-birth-weight infants at highest risk: gestational age < or =24 weeks, birth weight < or =750 g, and 1-minute Apgar < or =3. American Journal of Obstetrics and Gynecology, 191, 1084–1091.

    Article  PubMed  Google Scholar 

  • Sherlock, R. L., Anderson, P. J., & Doyle, L. W. (2005). Neurodevelopmental sequelae of intraventricular haemorrhage at 8 years of age in a regional cohort of ELBW/very preterm infants. Early Human Development, 81, 909–916.

    Article  CAS  PubMed  Google Scholar 

  • Short, E. J., Klein, N. K., Lewis, B. A., Fulton, S., Eisengart, S., Kercsmar, C., et al. (2003). Cognitive and academic consequences of bronchopulmonary dysplasia and very low birth weight: 8-year-old outcomes. Pediatrics, 112, e359.

    Article  PubMed  Google Scholar 

  • Skrablin, S., Kuvacic, I., Kalafatic, D., Peter, B., Gveric-Ahmetasevic, S., Letica-Protega, N., et al. (2002). Perinatal care improves the outcome of triplets. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 10, 26–31.

    Article  Google Scholar 

  • Soria-Pastor, S., Gimenez, M., Narberhaus, A., Falcon, C., Botet, F., Bargallo, N., et al. (2008). Patterns of cerebral white matter damage and cognitive impairment in adolescents born very preterm. International Journal of Developmental Neuroscience, 26, 647–654.

    Article  PubMed  Google Scholar 

  • Soria-Pastor, S., Padilla, N., Zubiaurre-Elorza, L., Ibarretxe-Bilbao, N., Botet, F., Costas-Moragas, C., et al. (2009). Decreased regional brain volume and cognitive impairment in preterm children at low risk. Pediatrics, 124, e1161–e1170.

    Article  PubMed  Google Scholar 

  • Spittle, A. J., Orton, J., Doyle, L. W., & Boyd, R. (2007). Early developmental intervention programs post hospital discharge to prevent motor and cognitive impairments in preterm infants. Cochrane Database of Systematic Reviews (2), CD005495.

  • Srinivasan, L., Dutta, R., Counsell, S. J., Allsop, J. M., Boardman, J. P., Rutherford, M. A., et al. (2007). Quantification of deep gray matter in preterm infants at term-equivalent age using manual volumetry of 3-tesla magnetic resonance images. Pediatrics, 119, 759–765.

    Article  PubMed  Google Scholar 

  • Steinmacher, J., Pohlandt, F., Bode, H., Sander, S., Kron, M., & Franz, A. R. (2008). Neurodevelopmental follow-up of very preterm infants after proactive treatment at a gestational age of >=23 Weeks. Journal of Pediatrics, 152, 771–776.

    Article  PubMed  Google Scholar 

  • Stewart, A. L., Rifkin, L., Amess, P. N., Kirkbride, V., Townsend, J. P., Miller, D. H., et al. (1999). Brain structure and neurocognitive and behavioural function in adolescents who were born very preterm. Lancet, 353, 1653–1657.

    Article  CAS  PubMed  Google Scholar 

  • Stiles, J. (2008). The fundamentals of brain development: Integrating nature and nurture. Cambridge: Harvard University Press.

    Google Scholar 

  • Stjernqvist, K. (1992). Extremely low birth weight infants less than 901 g. Impact on the family during the first year. Scandinavian Journal of Social Medicine, 20, 226–233.

    CAS  PubMed  Google Scholar 

  • Stjernqvist, K., & Svenningsen, N. W. (1990). Neurobehavioural development at term of extremely low-birthweight infants (less than 901 g). Developmental Medicine and Child Neurology, 32, 679–688.

    Article  CAS  PubMed  Google Scholar 

  • Stjernqvist, K., & Svenningsen, N. W. (1993). Extremely low-birth-weight infants less than 901 g. Growth and development after one year of life. Acta Paediatrica, 82, 40–44.

    Article  CAS  PubMed  Google Scholar 

  • Stjernqvist, K., & Svenningsen, N. W. (1995). Extremely low-birth-weight infants less than 901 g: Development and behaviour after 4 years of life. Acta Paediatrica, 84, 500–506.

    Article  CAS  PubMed  Google Scholar 

  • Stjernqvist, K., & Svenningsen, N. W. (1999). Ten-year follow-up of children born before 29 gestational weeks: health, cognitive development, behaviour and school achievement. Acta Paediatrica, 88, 557–562.

    Article  CAS  PubMed  Google Scholar 

  • Sutton, L., & Bajuk, B. (1999). Population-based study of infants born at less than 28 weeks’ gestation in New South Wales, Australia, in 1992–3. New South Wales Neonatal Intensive Care Unit Study Group. Paediatric and Perinatal Epidemiology, 13, 288–301.

    Article  CAS  PubMed  Google Scholar 

  • Synnes, A. R., Ling, E. W., Whitfield, M. F., Mackinnon, M., Lopes, L., Wong, G., et al. (1994). Perinatal outcomes of a large cohort of extremely low gestational age infants (twenty-three to twenty-eight completed weeks of gestation). Journal of Pediatrics, 125(6 Pt 1), 952–960.

    CAS  PubMed  Google Scholar 

  • Szatmari, P., Saigal, S., Rosenbaum, P., Campbell, D., & King, S. (1990). Psychiatric disorders at five years among children with birthweights less than 1000 g: a regional perspective. Developmental Medicine and Child Neurology, 32, 954–962.

    Article  CAS  PubMed  Google Scholar 

  • Tauscher, M. K., Berg, D., Brockmann, M., Seidenspinner, S., Speer, C. P., & Groneck, P. (2003). Association of histologic chorioamnionitis, increased levels of cord blood cytokines, and intracerebral hemorrhage in preterm neonates. Biology of the Neonate, 83, 166–170.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, H. G., Hack, M., & Klein, N. K. (1998). Attention deficits in children with <750 gm birth weight. Child Neuropsychology, 4, 21–34.

  • Taylor, H. G., Klein, N., Minich, N., & Hack, M. (2000). Middle-school-age outcomes in children with very low birthweight. Child Development, 71, 1495–1511.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, H. G., Minich, N. M., Klein, M., & Hack, M. (2004). Longitudinal outcomes of very low birth weight: neuropsychological findings. Journal of the International Neuropsychological Society, 10, 149–163.

    PubMed  Google Scholar 

  • Taylor, H. G., Klein, N., Drotar, D., Schluchter, M., & Hack, M. (2006). Consequences and risks of <1000-g birth weight for neuropsychological skills, achievement, and adaptive functioning. Journal of Developmental and Behavioral Pediatrics, 27, 459–469.

    Article  PubMed  Google Scholar 

  • Teplin, S. W., Burchinal, M., Johnson-Martin, N., Humphry, R. A., & Kraybill, E. N. (1991). Neurodevelopmental, health, and growth status at age 6 years of children with birth weights less than 1001 grams. Journal of Pediatrics, 118, 768–777.

    Article  CAS  PubMed  Google Scholar 

  • The Victorian Infant Collaborative Study Group. (1997). Outcome at 2 years of children 23–27 weeks’ gestation born in Victoria in 1991–92. The Victorian Infant Collaborative Study Group. Journal of Paediatrics and Child Health, 33, 161–165.

    Article  Google Scholar 

  • Thompson, D. K., Wood, S. J., Doyle, L. W., Warfield, S. K., Lodygensky, G. A., Anderson, P. J., et al. (2008). Neonate hippocampal volumes: prematurity, perinatal predictors, and 2-year outcome. Annals of Neurology, 63, 642–651.

    Article  PubMed  Google Scholar 

  • Tommiska, V., Heinonen, K., Lehtonen, L., Renlund, M., Saarela, T., Tammela, O., et al. (2007). No improvement in outcome of nationwide extremely low birth weight infant populations between 1996–1997 and 1999–2000. Pediatrics, 119, 29–36.

    Article  PubMed  Google Scholar 

  • Trautman, P. D., Meyer-Bahlburg, H. F., Postelnek, J., & New, M. I. (1995). Effects of early prenatal dexamethasone on the cognitive and behavioral development of young children: results of a pilot study. Psychoneuroendocrinology, 20, 439–449.

    Article  CAS  PubMed  Google Scholar 

  • Tyson, J. E., & Saigal, S. (2005). Outcomes for extremely low-birth-weight infants: Disappointing news. Journal of the American Medical Association, 294, 371–373.

    Article  CAS  PubMed  Google Scholar 

  • Tyson, J. E., Parikh, N. A., Langer, J., Green, C., & Higgins, R. D. (2008). Intensive care for extreme prematurity—moving beyond gestational age. The New England Journal of Medicine, 358, 1672–1681.

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebrouck, P., Allegaert, K., Bottu, J., Debauche, C., Devlieger, H., Docx, M., et al. (2004). The EPIBEL study: outcomes to discharge from hospital for extremely preterm infants in Belgium. Pediatrics, 114, 663–675.

    Article  PubMed  Google Scholar 

  • Vavasseur, C., Foran, A., & Murphy, J. F. (2007). Consensus statements on the borderlands of neonatal viability: from uncertainty to grey areas. Irish Medical Journal, 100, 561–564.

    CAS  PubMed  Google Scholar 

  • Vicari, S., Caravale, B., Carlesimo, G. A., Casadei, A. M., & Allemand, F. (2004). Spatial working memory deficits in children at ages 3–4 who were low birth weight, preterm infants. Neuropsychology, 18, 673–678.

    Article  PubMed  Google Scholar 

  • Vohr, B. R., & Garcia Coll, C. T. (1985). Neurodevelopmental and school performance of very low-birth weight infants: A seven year longitudinal study. Pediatrics, 76, 345–350.

    CAS  PubMed  Google Scholar 

  • Vohr, B. R., Wright, L., Dusick, A., Mele, L., Verter, J., Steichen, J. J., et al. (2000). Neurodevelopmental and functional outcomes of extremely low birth weight infants iin the National Institute of Child Health and Human Development Neonatal Research Network, 1993–1994. Pediatrics, 105, 1216–1226.

    Article  CAS  PubMed  Google Scholar 

  • Vohr, B. R., Allan, W., Westerveld, M., Schneider, K., Katz, K., Makuch, R. W., et al. (2003a). School-age outcomes of very low birth weight infants in the indomethacin intraventricular hemorrhage prevention trial. Pediatrics, 111, e340–e346.

    Article  PubMed  Google Scholar 

  • Vohr, B. R., Allan, W. C., Westerveld, M., Schneider, K. C., Katz, K. H., Makuch, R. W., et al. (2003b). School-age outcomes of very low birth weight infants in the indomethacin intraventricular hemorrhage prevention trial. Pediatrics, 111(4 Pt 1), e340–e346.

    Article  PubMed  Google Scholar 

  • Vohr, B. R., Wright, L. L., Dusick, A. M., Perritt, R., Poole, W. K., Tyson, J. E., et al. (2004). Center differences and outcomes of extremely low birth weight infants. Pediatrics, 113, 781–789.

    Article  PubMed  Google Scholar 

  • Vohr, B. R., Wright, L. L., Poole, W. K., & McDonald, S. A. (2005). Neurodevelopmental outcomes of extremely low birth weight infants <32 weeks’ gestation between 1993 and 1998. Pediatrics, 116, 635–643.

    Article  PubMed  Google Scholar 

  • Volpe, J. J. (2005). Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics, 116, 221–225.

    Article  PubMed  Google Scholar 

  • Volpe, J. J. (2008). Neurology of the newborn (5th ed.). Philadelphia: Saunders Elsevier.

    Google Scholar 

  • Wang, C. J., Elliott, M. N., Rogowski, J., Lim, N., Ratner, J. A., & Schuster, M. A. (2009). Factors influencing the enrollment of eligible extremely-low-birth-weight children in the part C early intervention program. Academic Pediatrics, 9, 283–287.

    Article  PubMed  Google Scholar 

  • Washburn, L. K., Dillard, R. G., Goldstein, D. J., Klinepeter, K. L., deRegnier, R. A., & O’Shea, T. M. (2007). Survival and major neurodevelopmental impairment in extremely low gestational age newborns born 1990–2000: a retrospective cohort study. BMC Pediatrics, 7, 20.

    Article  PubMed  Google Scholar 

  • Washington, J. A., & Craig, H. A. (1992). Performances of low-income, African-American preschool and kindergarten children on the Peabody Picture Vocabulary Test-Revised. Language, Speech, and Hearing Services in Schools, 23, 329–333.

    Google Scholar 

  • Weisglas-Kuperus, N., Baerts, W., Smrkovsky, M., & Sauer, P. J. (1993). Effects of biological and social factors on the cognitive development of very low birth weight children. Pediatrics, 92, 658–665.

    CAS  PubMed  Google Scholar 

  • Westrup, B., Stjernqvist, K., Kleberg, A., Hellstrom-Westas, L., & Lagercrantz, H. (2002). Neonatal individualized care in practice: a Swedish experience. Seminars in Neonatology, 7, 447–457.

    Article  PubMed  Google Scholar 

  • Wilson, T. T., Waters, L., Patterson, C. C., McCusker, C. G., Rooney, N. M., Marlow, N., et al. (2006). Neurodevelopmental and respiratory follow-up results at 7 years for children from the United Kingdom and Ireland enrolled in a randomized trial of early and late postnatal corticosteroid treatment, systemic and inhaled (the Open Study of Early Corticosteroid Treatment). Pediatrics, 117, 2196–2205.

    Article  PubMed  Google Scholar 

  • Wilson-Costello, D., Friedman, H., Minich, N., Siner, B., Taylor, G., Schluchter, M., et al. (2007). Improved neurodevelopmental outcomes for extremely low birth weight infants in 2000–2002. Pediatrics, 119, 37–45.

    Article  PubMed  Google Scholar 

  • Wolke, D., Samara, M., Bracewell, M., & Marlow, N. (2008). Specific language difficulties and school achievement in children born at 25 weeks of gestation or less. Journal of Pediatrics, 152, 256–262.

    Article  PubMed  Google Scholar 

  • Wood, N. S., Marlow, N., Costeloe, K., Gibson, A. T., & Wilkinson, A. R. (2000). Neurologic and developmental disability after extremely preterm birth. The New England Journal of Medicine, 343, 378–384.

    Article  CAS  PubMed  Google Scholar 

  • Wood, N. S., Costeloe, K., Gibson, A. T., Hennessy, E. M., Marlow, N., & Wilkinson, A. R. (2003). The EPICure study: growth and associated problems in children born at 25 weeks of gestational age or less. Archives of Disease in Childhood. Fetal and Neonatal Edition Archive, 88, F492–F500.

    Article  CAS  Google Scholar 

  • Woodward, L. J., Anderson, P. J., Austin, N. C., Howard, K., & Inder, T. E. (2006). Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. The New England Journal of Medicine, 355, 685–694.

    Article  CAS  PubMed  Google Scholar 

  • Yeh, T. F., Lin, Y. J., Lin, H. C., Huang, C. C., Hsieh, W. S., Lin, C. H., et al. (2004). Outcomes at school age after postnatal dexamethasone therapy for lung disease of prematurity. The New England Journal of Medicine, 350, 1304–1313.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, B. H., Jun, J. K., Romero, R., Park, K. H., Gomez, R., Choi, J. H., et al. (1997). Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. American Journal of Obstetrics and Gynecology, 177, 19–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Sue Baron.

Additional information

The authors have no financial or other relationships that could be interpreted as a conflict of interest affecting this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baron, I.S., Rey-Casserly, C. Extremely Preterm Birth Outcome: A Review of Four Decades of Cognitive Research. Neuropsychol Rev 20, 430–452 (2010). https://doi.org/10.1007/s11065-010-9132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-010-9132-z

Keywords

Navigation