Skip to main content

Advertisement

Log in

Neuropsychological Contributions to the Early Identification of Alzheimer’s Disease

  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

A wealth of evidence demonstrates that a prodromal period of Alzheimer’s disease (AD) exists for some years prior to the appearance of significant cognitive and functional declines required for the clinical diagnosis. This prodromal period of decline is characterized by a number of different neuropsychological and brain changes, and reliable identification of individuals prior to the development of significant clinical symptoms remains a top priority of research. In this review we provide an overview of those neuropsychological changes. In particular, we examine specific domains of cognition that appear to be negatively affected during the prodromal period of AD, and we review newer analytic strategies designed to examine cognitive asymmetries or discrepancies between higher-order cognitive functions versus fundamental skills. Finally, we provide a critical examination of the clinical concept of Mild Cognitive Impairment and offer suggestions for an increased focus on the impact of cerebrovascular disease (CVD) and CVD risk during the prodromal period of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert, M., Blacker, D., Moss, M. B., Tanzi, R., & McArdle, J. J. (2007). Longitudinal change in cognitive performance among individuals with mild cognitive impairment. Neuropsychology, 21, 158–169.

    Article  PubMed  Google Scholar 

  • Albert, M. S., Moss, M. B., Tanzi, R., & Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7, 631–639.

    Article  PubMed  CAS  Google Scholar 

  • Alladi, S., Arnold, R., Mitchell, J., Nestor, P. J., & Hodges, J. R. (2006). Mild cognitive impairment: applicability of research criteria in a memory clinic and characterization of cognitive profile. Psychological Medicine, 36(4), 1–9.

    Article  Google Scholar 

  • Allen, J. S., Bruss, J., & Damasio, H. (2005). The aging brain: the cognitive reserve hypothesis and hominid evolution. American journal of human biology, 17(6), 673–689.

    Article  PubMed  Google Scholar 

  • Alzheimer, A. (1907). Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift fuÉr Psychiatrie und psychisch-gerichtliche Medizin, 64, 146–148.

    Google Scholar 

  • Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56, 924–935.

    Article  PubMed  CAS  Google Scholar 

  • Arnaiz, E., Jelic, V., Almkvist, O., et al. (2001). Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment. Neuroreport, 12, 851–855.

    Article  PubMed  CAS  Google Scholar 

  • Bachman, D. L., Wolf, P. A., Linn, R., Knoefel, J. E., Cobb, J. L., Belanger, A. J., et al. (1992). Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham study. Neurology, 42, 115–119.

    PubMed  CAS  Google Scholar 

  • Bachman, D. L., Wolf, P. A., Linn, R., Knoefel, J. E., Cobb, J. L., Belanger, A. J., et al. (1993). Incidence of dementia and probable Alzheimer’s disease in a general population: The Framingham study. Neurology, 43, 515–519.

    PubMed  CAS  Google Scholar 

  • Bäckman, L., Small, B. J., & Fratiglioni, L. (2001). Stability of the preclinical episodic memory deficit in Alzheimer’s disease. Brain, 124, 96–102.

    Article  PubMed  Google Scholar 

  • Bäckman, L., Jones, S., Berger, A., Laukka, E. J., & Small, B. J. (2005). Cognitive impairment in preclinical Alzheimer’s disease: A meta-analysis. Neuropsychology, 19, 520–531.

    Article  PubMed  Google Scholar 

  • Bangen, K. J., Restom, K., Liu, T. T., Jak, A. J., Perthen, J. E., Wierenga, C. E., et al. (2007). Differential age effects on cerebral blood flow and BOLD response to encoding: Associations with cognition and stroke risk. Neurobiology of Aging (in press) DOI 10.1016/j.neurobiolaging.2007.11.012.

  • Barber, R., Gholkar, A., Scheltens, P., et al. (2000). MRI volumetric correlates of white matter lesions in dementia with Lewy bodies and Alzheimer’s disease. International Journal of Geriatric Psychiatry, 15(10), 911–916.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, D. E., Yaffe, K., Satariano, W. A., & Tager, I. B. (2003). A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. Journal of the American Geriatrics Society, 51(4), 459–465.

    Article  PubMed  Google Scholar 

  • Bennett, D. A., Schneider, J. A., Arvanitakis, Z., Kelly, J. F., Aggarwal, N. T., Shah, R. C., et al. (2006). Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, 66(12), 1837–1844.

    Article  PubMed  CAS  Google Scholar 

  • Bickel, H., Mösch, E., Seigerschmidt, E., Siemen, M., & Förstl, H. (2006). Prevalence and persistence of mild cognitive impairment among elderly patients in general hospitals. Dementia and Geriatric Cognitive Disorders, 21(4), 242–250.

    Article  PubMed  CAS  Google Scholar 

  • Bigler, E. D., Tate, D. F., Miller, M. J., et al. (2002). Dementia, asymmetry of temporal lobe structures, and Apolipoprotein E genotype: Relationships to cerebral atrophy and neuropsychological impairment. Journal of the International Neuropsychological Society, 8, 925–933.

    Article  PubMed  CAS  Google Scholar 

  • Blessed, G., Tomlinson, B. E., & Roth, M. (1968). The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. British journal of psychiatry, 114, 797–811.

    Article  PubMed  CAS  Google Scholar 

  • Bondi, M. W., Houston, W. W., Eyler, L. T., & Brown, G. G. (2005). FMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer’s disease. Neurology, 64, 501–508.

    PubMed  Google Scholar 

  • Bondi, M. W., Houston, W. S., Salmon, D. P., Corey-Bloom, J., Katzman, R., Thal, L. J., et al. (2003). Neuropsychological deficits associated with Alzheimer’s disease in the very old: Discrepancies in raw vs. standardized scores. Journal of the International Neuropsychological Society, 9, 783–795.

    Article  PubMed  CAS  Google Scholar 

  • Bondi, M. W., Monsch, A. U., Galasko, D., Butters, N., Salmon, D. P., & Delis, D. C. (1994). Preclinical cognitive markers of dementia of the Alzheimer type. Neuropsychology, 8, 374–384.

    Article  Google Scholar 

  • Bondi, M. W., Salmon, D. P., Galasko, D., Thomas, R. G., & Thal, L. J. (1999). Neuropsychological function and apolipoprotein E genotype in the preclinical detection of Alzheimer's disease. Psychology & Aging, 14, 295–303.

    Article  CAS  Google Scholar 

  • Bondi, M. W., Salmon, D. P., Monsch, A. U., Galasko, D., Butters, N., Klauber, M. R., et al. (1995). Episodic memory changes are associated with the ApoE-e4 allele in nondemented older adults. Neurology, 45, 2203–2206.

    PubMed  CAS  Google Scholar 

  • Bookheimer, S. Y., Strojwas, M. H., Cohen, M. S., Saunders, A. M., Pericak-Vance, M. A., Mazziotta, J. C., et al. (2000). Patterns of brain activation in people at risk for Alzheimer’s disease. New England journal of medicine, 343, 450–456.

    Article  PubMed  CAS  Google Scholar 

  • Borenstein, A. R., Copenhaver, C. I., & Mortimer, J. A. (2006). Early-life risk factors for Alzheimer disease. Alzheimer disease and associated disorders, 20, 63–72.

    Article  PubMed  Google Scholar 

  • Bowler, J. (2003). Epidemiology: Identifying vascular cognitive impairment. International psychogeriatrics, 15(Suppl1), 115–122.

    Article  PubMed  Google Scholar 

  • Bowler, J. V., & Hachinski, V. (2003). Vascular Cognitive Impairment. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Braak, H., & Braak, E. (1991). Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica, 82, 239–259.

    Article  PubMed  CAS  Google Scholar 

  • Braak, H., & Braak, E. (1995). Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging, 16, 15–31.

    Google Scholar 

  • Braak, H., Braak, E., Bohl, J., & Bratzke, H. (1998). Evolution of Alzheimer’s disease related cortical lesions. Journal of neural transmission, (Supplement), 54, 97–106.

    CAS  Google Scholar 

  • Breteler, M. M. (1998). Epidemiological evidence of a connection between Alzheimer’s disease and vascular dementia. Neurobiol Aging, 19(Suppl 4), S150.

    Google Scholar 

  • Breteler, M. M. (2000). Vascular involvement in cognitive decline and dementia: epidemiologic evidence from the Rotterdam Study and the Rotterdam Scan Study. Annals of the New York Academy of Sciences, 903, 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Brewer, J. B., & Moghekar, A. (2002). Imaging the medial temporal lobe: exploring new dimensions. Trends in cognitive sciences, 6, 217–223.

    Article  PubMed  Google Scholar 

  • Brookmeyer, R., Gray, S., & Kawas, C. (1998). Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. American journal of public health, 88(9), 1337–1342.

    Article  PubMed  CAS  Google Scholar 

  • Bugiani, O., Constantinidis, J., Ghetti, B., Bouras, C., & Tagliavini, F. (1991). Asymmetrical cerebral atrophy in Alzheimer’s disease. Clinical Neuropathology, 10, 55–60.

    PubMed  CAS  Google Scholar 

  • Busse, A., Hensel, A., Guhne, U., Angermeyer, M. C., & Riedel-Heller, S. G. (2006). Mild cognitive impairment: Long-term course of four clinical subtypes. Neurology, 67(12), 2176–2185.

    Article  PubMed  CAS  Google Scholar 

  • Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage, 17, 1394–1402.

    Article  PubMed  Google Scholar 

  • Caselli, R. J., Reiman, E. M., Osborne, J. G., et al. (2004). Longitudinal changes in cognition and behavior in asymptomatic carriers of the APOE e4 allele. Neurology, 62, 1990–1995.

    PubMed  CAS  Google Scholar 

  • Celsis, P., Agniel, A., Cardebat, D., Demonet, J. F., Ousset, P. J., & Puel, M. (1997). Age related cognitive decline: a clinical entity? A longitudinal study of cerebral blood flow and memory performance. Journal of Neurology, Neurosurgery and Psychiatry, 62, 601–608.

    Article  CAS  Google Scholar 

  • Chen, P., Ratcliff, G., Belle, S. H., Cauley, J. A., DeKosky, S. T., & Ganguli, M. (2001). Patterns of cognitive decline in presymptomatic Alzheimer disease: A prospective community study. Archives of general psychiatry, 58, 853–858.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, B. J., Buckwalter, J. G., & Henderson, V. W. (1996). Memory span procedures in Alzheimer’s disease. Neuropsychology, 10, 286–293.

    Article  Google Scholar 

  • Chui, H. C., Zarow, C., Mack, W. J., et al. (2006). Cognitive impact of subcortical vascular and Alzheimer’s disease pathology. Annals of neurology, 60(6), 677–687.

    Article  PubMed  Google Scholar 

  • Collette, F., Salmon, E., Van der Linden, M., Degueldre, C., & Franck, G. (1997). Functional anatomy of verbal and visuospatial span tasks in Alzheimer’s disease. Human brain mapping, 5, 110–118.

    Article  PubMed  CAS  Google Scholar 

  • Collie, A., & Maruff, P. (2000). The neuropsychology of preclinical Alzheimer’s disease and mild cognitive impairment. Neuroscience and Biobehavioral Reviews, 24, 365–374.

    Article  PubMed  CAS  Google Scholar 

  • Corder, E. H., Saunders, A. M., Strittmatter, W. J., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923.

    Article  PubMed  CAS  Google Scholar 

  • Cuetos, R., Arango-Lasprilla, J. C., Uribe, C., Valencia, C., & Lopera, F. (2007). Linguistic changes in verbal expression: A preclinical marker of Alzheimer’s disease. Journal of the International Neuropsychological Society, 13, 433–439.

    Article  PubMed  Google Scholar 

  • Cummings, J. L., & Benson, D. F. (1992). Dementia: A clinical approach (2nd ed.). Boston: Butterworth-Heinemann.

    Google Scholar 

  • DeCarli, C., Miller, B. L., Swan, G. E., Reed, T., Wolf, P. A., & Carmelli, D. (2001). Cerebrovascular and brain morphologic correlates of Mild Cognitive Impairment in the National Heart, Lung, and Blood Institute Twin Study. Archives of neurology, 58(4), 643–647.

    Article  PubMed  CAS  Google Scholar 

  • DeKosky, S. T., Ikonomovic, M. D., Styren, S. D., Beckett, L., Wisniewski, S., Bennett, D. A., et al. (2002). Up regulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Annals of neurology, 51, 145–155.

    Article  PubMed  CAS  Google Scholar 

  • Delano-Wood, L., Abeles, N., Sacco, J., et al. (2008). Regional white matter pathology in mild cognitive impairment: Differential influence of lesion type on neuropsychological functioning. Stroke (in press).

  • de la Torre, J. C. (2002). Alzheimer disease as a vascular disorder: Nosological evidence. Stroke, 33(4), 1152–1162.

    Article  PubMed  Google Scholar 

  • Delis, D., & Kaplan, E. (2001). Manual for the Delis-Kaplan Executive Function System. San Antonio: Psychological Corporation.

    Google Scholar 

  • Delis, D. C., Kiefner, M. G., & Fridlund, A. J. (1988). Visuospatial dysfunction following unilateral brain damage: Dissociations in hierarchical hemispatial analysis. Journal of Clinical & Experimental Neuropsychology, 10, 421–431.

    Article  CAS  Google Scholar 

  • Delis, D. C., Massman, P. J., Butters, N., Salmon, D. P., et al. (1992). Spatial cognition in Alzheimer’s disease: Subtypes of global–local impairment. Journal of Clinical & Experimental Neuropsychology, 14, 463–477.

    Article  CAS  Google Scholar 

  • de Leon, M., Convit, A., Wolf, O. T., et al. (2001). Prediction of cognitive decline in normal elderly subjects with 2-[(18)F] fluoro-2-deoxy-d-glucose/positron-emission tomography (FDG/PET). Proceedings of the National Academy of Sciences of the United States of America, 98, 10966–10971.

    Article  PubMed  Google Scholar 

  • Demadura, T., Delis, D. C., Jacobson, M., & Salmon, D. (2001). Do subgroups of patients with Alzheimer’s disease exhibit asymmetric deficits on memory tests? Journal of Clinical & Experimental Neuropsychology, 23, 164–171.

    Article  CAS  Google Scholar 

  • De Santi, S., de Leon, M. J., Rusinek, H., et al. (2001). Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiology of aging, 22, 529–539.

    Article  PubMed  Google Scholar 

  • D’Esposito, M., Zarahn, E., Aguirre, G. K., & Rypma, B. (1999). The effect of normal aging on the coupling of neural activity to the BOLD hemodynamic response. NeuroImage, 10, 6–14.

    Article  PubMed  CAS  Google Scholar 

  • Doody, R. S., Vacca, J. L., Massman, P. J., & Liao, T. Y. (1999). The influence of handedness on the clinical presentation and neuropsychology of Alzheimer disease. Archives of neurology, 56, 1133–1137.

    Article  PubMed  CAS  Google Scholar 

  • Dori, G. A., & Chelune, G. J. (2004). Education-stratified base-rate information on discrepancy scores within and between the Wechsler Adult Intelligence Scale—Third Edition and the Wechsler Memory Scale—Third Edition. Psychological assessment, 16, 146–154.

    Article  PubMed  Google Scholar 

  • Durany, N., Michel, T., Kurt, J., Cruz-Sanchez, F. F., Crevos-Navarro, J., & Riederer, P. (2000). Brain-derived neurotrophic factor and neurotrophin-3 levels in Alzheimer’s disease brains. International Journal of Developmental Neuroscience, 18, 807–813.

    Article  CAS  Google Scholar 

  • Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, E. Z., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.

    Article  PubMed  CAS  Google Scholar 

  • Etiene, D., Kraft, J., Ganju, N., et al. (1998). Cerebrovascular pathology contributes to the heterogeneity of Alzheimer’s disease. Journal of Alzheimer's disease, 1, 119–134.

    PubMed  Google Scholar 

  • Farris, W., Mansourian, S., Chang, Y., et al. (2003). Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proceedings of the National Academy of Sciences, 100(7), 4162–4167.

    Article  CAS  Google Scholar 

  • Farris, W., Mansourian, S., Leissring, M. A., et al. (2004). Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impairs degradation of amyloid beta-protein. American journal of pathology, 164(4), 1425–1434.

    PubMed  CAS  Google Scholar 

  • Fennema-Notestine, C., Gamst, A. C., Quinn, B. T., et al. (2007). Feasibility of multi-site clinical structural neuroimaging studies of aging using legacy data. Neuroinformatics, 5, 235–245.

    Article  PubMed  Google Scholar 

  • Filoteo, J. V., Delis, D. C., Massman, P. J., Demadura, T., et al. (1992). Directed and divided attention in Alzheimer’s disease: Impairment in shifting of attention to global and local stimuli. Journal of Clinical & Experimental Neuropsychology, 14, 871–883.

    Article  CAS  Google Scholar 

  • Finton, M. J., Lucas, J. A., Rippeth, J. D., et al. (2003). Cognitive asymmetries associated with apolipoprotein E genotype in patients with Alzheimer’s disease. Journal of the International Neuropsychological Society, 9, 751–759.

    Article  PubMed  CAS  Google Scholar 

  • Fisk, J. D., & Rockwood, K. (2005). Outcomes of incident mild cognitive impairment in relation to case definition. Journal of Neurology, Neurosurgery and Psychiatry, 76(8), 1175–1177.

    Article  CAS  Google Scholar 

  • Franceschi, M., Alberoni, M., Bressi, S., et al. (1995). Correlations between cognitive impairment, middle cerebral artery flow velocity and cortical glucose metabolism in the early phase of Alzheimer’s disease. Dementia, 6, 32–38.

    PubMed  CAS  Google Scholar 

  • Fratiglioni, L., & Wang, H. X. (2007). Brain reserve hypothesis in dementia. Journal of Alzheimer's disease, 12, 11–22.

    PubMed  Google Scholar 

  • Geroldi, C., Laakso, M. P., DeCarli, C., et al. (2000). Apolipoprotein E genotype and hippocampal asymmetry in Alzheimer’s disease: A volumetric MRI study. Journal of Neurology, Neurosurgery & Psychiatry, 68, 93–96.

    Article  CAS  Google Scholar 

  • Grober, E., & Kawas, C. (1997). Learning and retention in preclinical and early Alzheimer’s disease. Psychology and Aging, 12, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Grundman, M., Petersen, R. C., Ferris, S. H., et al. (2004). Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Archives of neurology, 61(1), 59–66.

    Article  PubMed  Google Scholar 

  • Guskiewicz, K. M., Marshall, S. W., Bailes, J., McCrea, M., Cantu, R. C., Randolph, C., et al. (2005). Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurg, 57(4), 719–726.

    Article  Google Scholar 

  • Guttman, C. R., Jolesz, F. A., Kikinis, R., Killiany, R. J., Moss, M. B., Sandor, T., et al. (1998). White matter changes with normal aging. Neurology, 50, 972–978.

    Google Scholar 

  • Han, S. D., Houston, W. S., Jak, A. J., Eyler, L. T., Nagel, B. J., Fleisher, A. S., et al. (2007). Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemisphere compensatory response. Neurobiology of aging, 28, 238–247.

    Article  PubMed  CAS  Google Scholar 

  • Haxby, J. V., Duara, R., Grady, C. L., & Cutler, N. R. (1985). Rapoport SI. Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. Journal of cerebral blood flow and metabolism, 5, 193–200.

    PubMed  CAS  Google Scholar 

  • Haxby, J. V., Grady, C. L., Koss, E., et al. (1990). Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Archives of neurology, 47, 753–760.

    PubMed  CAS  Google Scholar 

  • Hayden, K. M., Zandi, P. P., Lyketsos, C. G., et al. (2006). Vascular risk factors for incident Alzheimer disease and vascular dementia: The Cache county study. Alz Dis Assoc Disord, 20, 93–100.

    Article  Google Scholar 

  • Heaton, R. K., Grant, I., & Matthews, C. G. (1991). Comprehensive norms for an expanded Halstead-Reitan Battery: Demographic corrections, research findings, and clinical applications. Odessa, FL: Psychological Assessment Resources.

    Google Scholar 

  • Heaton, R. K., Miller, S. W., Taylor, M. J., & Grant, I. (2004). Revised comprehensive norms for an expanded Halstead-Reitan Battery: Demographically adjusted neuropsychological norms for African American and Caucasian adults Scoring Program. Odessa, FL: Psychological Assessment Resources, Inc.

    Google Scholar 

  • Helbecque, N., & Amouyel, P. (2004). Commonalities between genetics of cardiovascular disease and neurodegenerative disorders. Current opinion in lipidology, 15, 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Hensel, A., Angermeyer, M. C., & Riedel-Heller, S. G. (2007). Measuring cognitive change in older adults: Reliable change indices for the Mini-Mental State Examination. Journal of Neurology, Neurosurgery and Psychiatry, 78(12), 1298–1303.

    Article  CAS  Google Scholar 

  • Hirao, K., Ohnishi, T., Matsuda, H., et al. (2006). Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer’s disease using brain perfusion single-photon computed tomography. Nuclear Medicine, 27, 151–156.

    Article  Google Scholar 

  • Hirono, N., Kitagaki, H., Kazui, H., et al. (2000). Impact of white matter changes on clinical manifestation of Alzheimer’s disease. Stroke, 31, 2182–2188.

    PubMed  CAS  Google Scholar 

  • Hofman, A., Ott, A., & Breteler, M. M. (1997). Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet, 349, 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Honig, L. S., Tang, M.-X., Albert, S., et al. (2003). Stroke and the risk of Alzheimer disease. Archives of neurology, 60, 1707–1712.

    Article  PubMed  Google Scholar 

  • Houston, W. S., Delis, D. C., Lansing, A., et al. (2005). Executive function asymmetry in older adults genetically at-risk for Alzheimer's disease: Verbal versus design fluency. Journal of the International Neuropsychological Society, 11, 863–870.

    Article  PubMed  Google Scholar 

  • Iadecola, C., & Gorelick, P. B. (2003). Converging pathogenic mechanisms in vascular and neurodegenerative dementia. Stroke, 34(2), 335–337.

    Article  PubMed  Google Scholar 

  • Jack, C. R., Petersen, R. C., Xu, Y. C., Waring, S. C., O’Brien, P. C., et al. (1998). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology, 49, 786–794.

    Google Scholar 

  • Jacobs, D. M., Sano, M., Dooneief, G., Marder, K., Bell, K. L., & Stern, Y. (1995). Neuropsychological detection and characterization of preclinical Alzheimer’s disease. Neurology, 45, 957–962.

    PubMed  CAS  Google Scholar 

  • Jacobson, M. W., Delis, D. C., Bondi, M. W., & Salmon, D. P. (2002). Do neuropsychological tests detect preclinical Alzheimer’s disease: individual-test versus cognitive-discrepancy score analyses. Neuropsychology, 16, 132–139.

    Article  PubMed  Google Scholar 

  • Jacobson, M. W., Delis, D. C., Bondi, M. W., & Salmon, D. P. (2005a). Asymmetry in auditory and spatial span attention in normal elderly genetically at risk for Alzheimer’s disease. Journal of Clinical & Experimental Neuropsychology, 27, 240–253.

    Article  Google Scholar 

  • Jacobson, M. W., Delis, D. C., Lansing, A., et al. (2005b). Asymmetries in global-local processing ability in elderly people with the apolipoprotein e-epsilon4 allele. Neuropsychology, 19, 822–829.

    Article  PubMed  Google Scholar 

  • Jellinger, K. A. (2004). Head injury and dementia. Current opinion in neurology, 17, 719–723.

    Article  PubMed  Google Scholar 

  • Jernigan, T. J., Archibald, S. L., Fennema-Notestine, C., Gamst, A. C., Stout, J. C., Bonner, J., et al. (2001). Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiology of aging, 22, 581–594.

    Article  PubMed  CAS  Google Scholar 

  • Jick, H., Zornberg, G. L., Jick, S. S., et al. (2000). Statins and the risk of dementia. Lancet, 356(9242), 1627–1631.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, B. D., Relkin, N. R., Ravdin, L. D., Jacobs, A. R., Bennett, A., & Gandy, S. (1997). Apolipoprotein E epsilon4 associated with chronic traumatic brain injury in boxing. JAMA, 278, 136–140.

    Article  PubMed  CAS  Google Scholar 

  • Kawas, C. H., & Katzman, R. (1999). Epidemiology of dementia and Alzheimer disease. In R. D. Terry, R. Katzman, K. L. Bick, & S. S. Sisodia (Eds.), Alzheimer disease, 2nd edition (pp 95–116).

  • Kivipelto, M., Ngandu, T., Fratiglioni, L., et al. (2005). Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Archives of neurology, 62, 1556–1560.

    Article  PubMed  Google Scholar 

  • Knopman, D., Boland, L. L., Mosley, T., Howard, G., Liao, D., Szklo, M., et al. (2001). Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology, 56, 42–8.

    PubMed  CAS  Google Scholar 

  • Koenig, P., Smith, E. E., Moore, P., Glosser, G., & Grossman, M. (2007). Categorization of novel animals by patients with Alzheimer’s disease and corticobasal degeneration. Neuropsychology, 21, 193–206.

    Article  PubMed  Google Scholar 

  • Kogure, D., Matsuda, H., Ohnishi, T., et al. (2000). Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. Journal of nuclear medicine, 41, 1155–1162.

    PubMed  CAS  Google Scholar 

  • Kramer, A. F., & Erickson, K. I. (2007). Capitalizing on cortical plasticity: Influence of physical activity on cognition and brain function. Trends in cognitive Neurosciences, 11(8), 342–348.

    Article  Google Scholar 

  • Kramer, J. H., Nelson, A., Johnson, J. K., et al. (2006). Multiple cognitive deficits in amnestic mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 22(4), 306–311.

    Article  PubMed  Google Scholar 

  • Kryscio, R. J., Schmitt, F. A., Salazar, J. C., Mendiondo, M. S., & Markesbery, W. R. (2006). Risk factors for transitions from normal to mild cognitive impairment and dementia. Neurology, 66(6), 828–832.

    Article  PubMed  CAS  Google Scholar 

  • La Rue, A., Matsuyama, S. S., McPherson, S., et al. (1992). Cognitive performance in relatives of patients with probable Alzheimer’s disease: An age at onset effect? Journal of clinical and experimental neuropsychology, 14, 533–538.

    Article  PubMed  Google Scholar 

  • Lange, K. L., Bondi, M. W., Galasko, D. G., Delis, D. C., Salmon, D. P., & Thal, L. J. (2002). Decline in verbal memory during preclinical Alzheimer’s disease: Examination of the effect of Apolipoprotein E genotype. Journal of the International Neuropsychological Society, 8, 943–955.

    Article  PubMed  CAS  Google Scholar 

  • Lange, R. T., Chelune, G. J., & Tulsky, D. S. (2006). Development of WAIS-III General Ability Index Minus WMS-III memory discrepancy scores. Clinical neuropsychology, 20, 382–395.

    Article  Google Scholar 

  • Larrieu, S., Letenneur, L., Orgogozo, J. M., et al. (2002). Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology, 59(10), 1594–1599.

    PubMed  CAS  Google Scholar 

  • Launer, L. J., Ross, G. W., Petrovich, H., et al. (2000). Midlife blood pressure and dementia: The Honolulu-Asia Aging Study. Neurobiology of aging, 21, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Levy, J. A., Bergeson, J., Putnam, K., Rosen, V., Cohen, R., Lalonde, F., et al. (2004). Context-specific memory and apolipoprotein E (ApoE) e4: Cognitive evidence from the NIMH prospective study of risk for Alzheimer’s disease. Journal of the International Neuropsychological Society, 10, 362–370.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, O. L., Becker, J. T., Jagust, W. J., et al. (2006). Neuropsychological characteristics of mild cognitive impairment subgroups. Journal of Neurology, Neurosurgery and Psychiatry, 77(2), 159–165.

    Article  CAS  Google Scholar 

  • Luchsinger, J. A., & Mayeux, R. (2004). Cardiovascular risk factors and Alzheimer’s disease. Current atherosclerosis reports, 6(4), 261–266.

    Article  PubMed  Google Scholar 

  • Luchsinger, J. A., Reitz, C., Honig, L. S., et al. (2005). Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology, 65(4), 545–551.

    Article  PubMed  CAS  Google Scholar 

  • Luchsinger, J. A., Reitz, C., Patel, B., et al. (2007). Relation of diabetes to mild cognitive impairment. Archives of neurology, 64(4), 570–575.

    Article  PubMed  Google Scholar 

  • Luchsinger, J. A., Tang, M. X., Shea, S., et al. (2004). Hyperinsulinemia and risk of Alzheimer disease. Neurology, 63(7), 1187–1192.

    PubMed  Google Scholar 

  • Manly, J. J., Bell-McGinty, S., Tang, M., Schupf, N., Stern, Y., & Mayeux, R. (2005). Implementing diagnostic criteria and estimating frequency of mild cognitive impairment in an urban community. Archives of neurology, 62(11), 1739–1746.

    Article  PubMed  Google Scholar 

  • Margaglione, M., Seripa, D., Gravina, C., et al. (1998). Prevalence of apolipoprotein E alleles in healthy subjects and survivors of ischemic stroke. Stroke, 29, 399–403.

    PubMed  CAS  Google Scholar 

  • Martin, A. (1990). Neuropsychology of Alzheimer’s disease: The case for subgroups. In M. F. Schwartz (Ed.) Modular deficits in Alzheimer-type dementia. Issues in the biology of language and cognition (pp. 143–175). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Masliah, E., Mallory, M., Hansen, L. A., DeTeresa, R., & Terry, R. D. (1993). Quantitative synaptic alterations in the human neocortex during normal aging. Neurology, 43, 192–197.

    PubMed  CAS  Google Scholar 

  • Mayeux, R., Ottman, R., Maestre, G., Ngai, C., Tang, M.-X., Ginsberg, H., Chun, M., Tycko, B., et al. (1995). Synergistic effects of traumatic head injury and apolipoprotein e4 in patients with Alzheimer’s disease. Neurology, 45, 555–557.

    PubMed  CAS  Google Scholar 

  • Mentis, M. J., Salerno, J., Horwitz, B., et al. (1994). Reduction of functional neuronal connectivity in long-term treated hypertension. Stroke, 25(3), 601–607.

    PubMed  CAS  Google Scholar 

  • Mickes, L., Wixted, J. T., Fennema-Notestine, C., Galasko, D., Bondi, M. W., Thal, L. J., et al. (2007). Progressive impairment on neuropsychological tasks in a longitudinal study of preclinical Alzheimer’s disease. Neuropsychology, 21, 696–705.

    Article  PubMed  Google Scholar 

  • Miech, R. A., Breitner, J. C., Zandi, P. P., Khachaturian, A. S., Anthony, J. C., & Mayer, L. (2002). Incidence of AD may decline in the early 90s for men, later for women: The Cache County study. Neurology, 58, 209–218.

    PubMed  CAS  Google Scholar 

  • Mielke, M. M., Rosenberg, P. B., Tschanz, J., et al. (2007). Vascular factors predict rate of progression in Alzheimer disease. Neurology, 69, 1850–1858.

    Article  PubMed  CAS  Google Scholar 

  • Mitrushina, M., Uchiyama, C., & Satz, P. (1995). Heterogeneity of cognitive profiles in normal aging: Implications for early manifestations of Alzheimer’s disease. Journal of clinical and experimental neuropsychology, 17, 374–382.

    Article  PubMed  CAS  Google Scholar 

  • Mortimer, J. A., van Duijn, C. M., Chandra, V., Fratglioni, L., Graves, A. B., Heyman, A., et al. (1991). Head trauma as a risk factor for Alzheimer’s disease: A collaborative re-analysis of case-control studies. International journal of epidemiology, 20(suppl. 2), S28–35.

    PubMed  Google Scholar 

  • Mu, Q., Xie, J., Wen, Z., Weng, Y., & Shuyun, Z. (1999). A quantitative MR study of the hippocampal formation, the amygdala, and the temporal horn of the lateral ventricle in healthy subjects 40 to 90 years of age. AJNR American journal of neuroradiology, 20, 207–211.

    PubMed  CAS  Google Scholar 

  • Okamura, N., Shinkawa, M., Arai, H., et al. (2000). Prediction pf progression in patients with mild cognitive impairment using IMP-SPECT. Nippon Ronen Igakkai Zasshi, 37, 974–978.

    PubMed  CAS  Google Scholar 

  • Ott, A., Breteler, M. M., de Bruyne, M. C., et al. (1997). Atrial fibrillation and dementia in a population-based study: The Rotterdam Study. Stroke, 28, 316–321.

    PubMed  CAS  Google Scholar 

  • Ott, A., Slooter, A. J., Hofman, A., et al. (1998). Smoking and risk of dementia and Alzheimer’s disease in a population-based cohort study: the Rotterdam Study. Lancet, 351, 1840–1843.

    Article  PubMed  CAS  Google Scholar 

  • Ott, A., Stolk, R. P., Hofman, A., et al. (1999). Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology, 53, 1907–1909.

    Google Scholar 

  • Parasuraman, R., Greenwood, P. M., Haxby, J. V., & Grady, C. L. (1992). Visuospatial attention in dementia of the Alzheimer type. Brain, 115(Pt 3), 711–733.

    Article  PubMed  Google Scholar 

  • Pedraza, O., Bowers, D., & Gilmore, R. (2004). Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults. Journal of the International Neuropsychological Society, 10, 664–678.

    Article  PubMed  Google Scholar 

  • Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, R. C., Doody, R. S., Kurz, A., et al. (2001). Current concepts in mild cognitive impairment. Archives of neurology, 58(12), 1985–1992.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, R. C., & Morris, J. C. (2005). Mild cognitive impairment as a clinical entity and treatment target. Archives of Neurology, 62, 1160–1163.

    Article  PubMed  Google Scholar 

  • Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of neurology, 56(3), 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Petrovich, H., White, L. R., Izmirilian, G., et al. (2000). Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS, Honolulu–Asia Aging Study. Neurobiology of aging, 21, 57–62.

    Google Scholar 

  • Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of neurology, 51, 874–887.

    PubMed  CAS  Google Scholar 

  • Polvikoski, T., Sulkava, R., Myllykangas, L., et al. (2001). Prevalence of Alzheimer’s disease in very elderly people: A prospective neuropathological study. Neurology, 56, 1690–1696.

    PubMed  CAS  Google Scholar 

  • Portet, F., Ousset, P. J., Visser, P. J., et al. (2006). Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimer’s Disease. Journal of Neurology, Neurosurgery and Psychiatry, 77(6), 714–718.

    Article  CAS  Google Scholar 

  • Powell, M. R., Smith, G. E., Knopman, D. S., et al. (2006). Cognitive measures predict pathologic Alzheimer disease. Archives of Neurology, 63, 865–868.

    Article  PubMed  Google Scholar 

  • Rasmusson, D. X., & Brandt, J. (1995). Instability of cognitive asymmetry in Alzheimer’s Disease. Journal of Clinical and Experimental Neuropsychology, 17, 449–458.

    Article  Google Scholar 

  • Raz, N., Gunning-Dixon, F., Head, D., Rodrigue, K. M., Williamson, A., & Acker, J. D. (2004). Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiology of aging, 25, 377–396.

    Article  PubMed  Google Scholar 

  • Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: patterns, cognitive correlates and modifiers. Neuroscience and biobehavioral reviews, 30, 730–748.

    Article  PubMed  Google Scholar 

  • Refolo, L. M., Malester, B., LaFrancois, J., et al. (2000). Hypercholestremia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiology of disease, 7(4), 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Regan, C., Katona, C., Walker, Z., et al. (2006). Relationship of vascular risk to the progression of Alzheimer’s disease. Neurology, 67, 1357–1362.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, G., Vitali, P., Calvini, P., et al. (2000). Hippocampal perfusion in mild cognitive impairment. Psychiatry research, 100, 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, V. M., Sunderland, T., Levy, J., Harwell, A., McGee, L., Hammond, C., et al. (2005). Apolipoprotein E and category fluency: evidence for reduced semantic access in healthy normal controls at risk for developing Alzheimer’s disease. Neuropsychologia, 43, 647–658.

    Article  PubMed  Google Scholar 

  • Rubin, E. H., Storandt, M., Miller, P., Kinscherf, D. A., Grant, E. A., Morris, J. C., et al. (1998). A prospective study of cognitive function and onset of dementia in cognitively healthy elders. Archives of neurology, 55, 395–401.

    Article  PubMed  CAS  Google Scholar 

  • Salat, D. H., Kaye, J. A., & Janowsky, J. S. (1999). Prefrontal gray and white matter volumes in healthy aging and Alzheimer disease. Archives of neurology, 56, 338–344.

    Article  PubMed  CAS  Google Scholar 

  • Salmon, D. P., & Bondi, M. W. (1999). Neuropsychology of Alzheimer’s disease. In R. D. Terry, R. Katzman, K. L. Bick, & S. S. Sisodia (Eds.) Alzheimer Disease (pp. 39–56). Philadelphia: Lippincott Williams & Wilkens.

    Google Scholar 

  • Salmon, D. P., Thomas, R. G., Pay, M. M., et al. (2002). Alzheimer’s disease can be accurately diagnosed in very mildly impaired individuals. Neurology, 59, 1022–1028.

    PubMed  CAS  Google Scholar 

  • Saunders, A. M., Strittmatter, W. J., Schmechel, D., St. George-Hyslop, P. H., Pericak-Vance, M. A., Joo, S. H., et al. (1993). Association of apolipoprotein E allele e4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43, 1467–1472.

    PubMed  CAS  Google Scholar 

  • Schneider, J. A., Wilson, R. S., Bienias, J. L., et al. (2004). Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology, 62(7), 1148–1155.

    PubMed  CAS  Google Scholar 

  • Silvestrini, M., Pasqualetti, P., Baruffaldi, R., et al. (2006). Cerebrovascular reactivity and cognitive decline in patients with Alzheimer disease. Stroke, 37(4), 1010–1015.

    Article  PubMed  Google Scholar 

  • Small, B. J., Fratiglioni, L., Viitanen, M., Winblad, B., & Bäckman, L. (2000). The course of cognitive impairment in preclinical Alzheimer disease: Three- and 6-year follow-up of a population-based sample. Archives of neurology, 57, 839–844.

    Article  PubMed  CAS  Google Scholar 

  • Small, G. W., La Rue, A., Komo, S., Kaplan, A., & Mandelkern, M. A. (1995a). Predictors of cognitive change in middle-aged and older adults with memory loss. American Journal of Psychiatry, 152, 1757–64.

    PubMed  CAS  Google Scholar 

  • Small, G. W., Mazziotta, J. C., Collins, M. T., Baxter, L. R., Phelps, M. E., Mandelkern, M. A., et al. (1995b). Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA, 273, 942–947.

    Article  PubMed  CAS  Google Scholar 

  • Small, B. J., Mobly, J. L., Laukka, E. J., Jones, S., & Bäckman, L. (2003). Cognitive deficits in preclinical Alzheimer’s disease. Acta Neurologica Scandinavica, Supplementum, 179, 29–33.

    Article  Google Scholar 

  • Smith, G., Machulda, M., & Kantarci, K. (2006). A perspective from the Mayo Clinic. In H. A. Tuokko, & D. F. Hultsch (Eds.) Mild Cognitive Impairment: International Perspectives (pp. 131–162). New York: Taylor & Francis.

    Google Scholar 

  • Smith, G. E., Pankratz, V. S., Negash, S., et al. (2007). A plateau in pre-Alzheimer memory decline: Evidence for compensatory mechanisms? Neurology, 69, 133–139.

    Article  PubMed  CAS  Google Scholar 

  • Snowdon, D. A., Greiner, L. H., Mortimer, J. A., et al. (1997). Brain infraction and the clinical expression of Alzheimer disease. The Nun Study. JAMA, 277, 813–817.

    Article  PubMed  CAS  Google Scholar 

  • Storandt, M., Grant, E. A., Miller, J. P., & Morris, J. C. (2002). Rates of progression in mild cognitive impairment and early Alzheimer’s disease. Neurology, 59, 1034–1041.

    PubMed  Google Scholar 

  • Storandt, M., Grant, E. A., Miller, J. P., & Morris, J. C. (2006). Longitudinal course and neuropathologic outcomes in original vs revised MCI and in pre-MCI. Neurology, 67(3), 467–473.

    Article  PubMed  Google Scholar 

  • Strite, D., Massman, P. J., Cooke, N., & Doody, R. S. (1997). Neuropsychological asymmetry in Alzheimer’s disease: verbal versus visuoconstructional deficits across stages of dementia. Journal of the International Neuropsychological Society, 3, 420–427.

    PubMed  CAS  Google Scholar 

  • Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., et al. (1993). Apolipoprotein-E—High-avidity binding to B-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proceedings of the National Academy of Sciences [USA], 90, 9649–9653.

    Article  Google Scholar 

  • Swan, G. E., DeCarli, C., Miller, B. L., et al. (2000). Biobehavioral characteristics of nondemented older adults with subclinical brain atrophy. Neurology, 54(11), 2108–2114.

    PubMed  CAS  Google Scholar 

  • Tabert, M. H., Manly, J. J., Liu, X., et al. (2006). Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Archives of General Psychiatry, 63(8), 916–924.

    Article  PubMed  Google Scholar 

  • Terry, R. D., Katzman, R., Bick, K. L., & Sisodia, S. S. (Eds.) (1999). Alzheimer disease (2nd ed.). New York: Lippincott.

  • Tian, J., Bucks, R. S., Haworth, J., & Wilcock, G. (2003). Neuropsychological prediction of conversion to dementia from questionable dementia: Statistically significant but not yet clinically useful. Journal of Neurology, Neurosurgery and Psychiatry, 74(4), 433–438.

    Article  CAS  Google Scholar 

  • Tuokko, H. A., & McDowell, I. (2006). An overview of mild cognitive impairment. In H. A. Tuokko, & D. F. Hultsch (Eds.) Mild Cognitive Impairment: International Perspectives (pp. 3–28). New York: Taylor and Francis.

    Google Scholar 

  • Twamley, E. W., Ropacki, S., & Bondi, M. W. (2006). Neuropsychological and neuroimaging changes in preclinical Alzheimer’s disease. Journal of the International Neuropsychological Society, 12, 707–735.

    Article  PubMed  Google Scholar 

  • Tyas, S. L., Manfreda, J., Strain, L. A., et al. (2001). Risk factors for Alzheimer’s disease: a population-based, longitudinal study in Manitoba, Canada. International journal of epidemiology, 30, 590–597.

    Article  PubMed  CAS  Google Scholar 

  • van Duijn, C. M., Hofman, A., & Kay, D. W. (1991). Risk factors for Alzheimer's disease: A collaborative re-analysis of case-control studies. International journal of epidemiology, 20(Suppl. 2).

  • Venneri, A., Pentore, R., Cotticelli, B., & Della Sala, S. (1998). Unilateral spatial neglect in the late stage of Alzheimer’s disease. Cortex, 34, 743–52.

    Article  PubMed  CAS  Google Scholar 

  • Wetter, S. R., Delis, D. C., Houston, W. S., et al. (2006). Heterogeneity in verbal memory: A marker of preclinical Alzheimer’s disease? Neuropsychology, development, and cognition. Section B, Aging, neuropsychology and cognition, 13, 503–515.

    PubMed  Google Scholar 

  • Wetter, S. R., Delis, D. C., Houston, W. S., Jacobson, M. W., Lansing, A., Cobell, K., et al. (2005). Deficits in inhibition and flexibility are associated with the APOE-E4 allele in nondemented older adults. Journal of clinical and experimental neuropsychology, 27, 943–952.

    Article  PubMed  Google Scholar 

  • Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., & DeLong, M. R. (1982). Alzheimer's disease and senile dementia: Loss of neurons in the basal forebrain. Science, 215, 1237–1239.

    Article  PubMed  CAS  Google Scholar 

  • Wierenga, C. E., & Bondi, M. W. (2007). The use of functional magnetic resonance imaging in preclinical Alzheimer’s disease. Neuropsychology review, 17, 127–143.

    Article  PubMed  Google Scholar 

  • Wilde, N., Strauss, E., Chelune, G., Loring, D., Martin, R., Hermann, B., et al. (2001). WMS-III performance in patients with temporal lobe epilepsy: Group differences and individual classification. Journal of the International Neuropsychological Society, 7, 881–891.

    PubMed  CAS  Google Scholar 

  • Wolf, H., Grunwald, M., Kruggel, F., et al. (2001). Hippocampal volume discriminates between normal cognition; questionable and mild dementia in the elderly. Neurobiology of aging, 22, 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Yaffe, K., Petersen, R. C., Lindquist, K., Kramer, J., & Miller, B. (2006). Subtype of mild cognitive impairment and progression to dementia and death. Dementia and Geriatric Cognitive Disorders, 22(4), 312–319.

    Article  PubMed  Google Scholar 

  • Zanetti, M., Ballabio, C., Abbate, C., Cutaia, C., Vergani, C., & Bergamaschini, L. (2006). Mild Cognitive impairment subtypes and vascular dementia in community-dwelling elderly people: A 3-year follow-up study. Journal of the American Geriatrics Society, 54(4), 580–586.

    Article  PubMed  Google Scholar 

  • Zhang, M., Katzman, R., Salmon, D. P., Jin, H., Cai, G., Wang, Z., et al. (1990). The prevalence of dementia and Alzheimer’s disease (AD) in Shanghai, China: Impact on age, gender and education. Annals of neurology, 27, 428–437.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This critical review was supported by funds from NIA grants P50 AG005131 (MWB, DPS), RO1 AG012674 (MWB), and K24 AG026431 (MWB) to the University of California San Diego and the Veterans Medical Research Foundation, by grants from the Department of Veterans Affairs (DCD, AJJ, MWJ), and by a grant from the Alzheimer’s Association (AJJ). The authors wish to thank our many collaborators and volunteers at the UCSD Alzheimer’s Disease Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Bondi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondi, M.W., Jak, A.J., Delano-Wood, L. et al. Neuropsychological Contributions to the Early Identification of Alzheimer’s Disease. Neuropsychol Rev 18, 73–90 (2008). https://doi.org/10.1007/s11065-008-9054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-008-9054-1

Keywords

Navigation