Skip to main content

Advertisement

Log in

Neuroprotective effect of Berberine Nanoparticles Against Seizures in Pentylenetetrazole Induced Kindling Model of Epileptogenesis: Role of Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Mechanisms

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

There is an unmet need to develop alternative therapeutic strategies to not only restrain seizures but also to alleviate the underlying pathologies and sequelae. Berberine (BBR), an isoquinoline alkaloid, has shown promising effect in the kindling model of epileptogenesis, but due to the poor oral bioavailability its clinical application is limited. So, the present study was designed to study the neuroprotective effect of BBR nanoparticles (enhanced bioavailability as compared to BBR) against seizures in pentylenetetrazole (PTZ) induced kindling model of epileptogenesis. Kindling model was established in male Wistar rats by intraperitoneal (i.p.) administration of PTZ (30 mg/kg) on every alternate day till the animal became fully kindled or till 6 weeks. Three doses of BBR (50, 100, and 200 mg/kg) and nano-BBR (25, 50, 100 mg/kg) were studied for seizure score, percentage of animal kindled, histopathological score, oxidative stress, inflammation, and apoptosis in PTZ treated rats by conducting cytokines, gene expression and protein expression analysis. BBR nanoparticles showed significant effect on the seizure score and percentage of animal kindled, histopathological score, neurobehavioral parameters (Forced swim test, Rotarod), oxidative (MDA, SOD, GSH, GPx) and inflammatory (IL-1beta, TNF-alpha) parameters, apoptotic parameters (Bax and iNOS), and gene (Nrf2, NQO1, HO1) and protein expression (Nrf2) as compared to both PTZ and BBR. BBR nanoparticles showed neuroprotective effect in PTZ induced kindling model of epileptogenesis and proves to be a promising antiepileptogenic therapy for the patients who are at high risk of developing seizures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be available on request.

References

  1. Beghi E, Giussani G, Nichols E, Abd-Allah F, Abdela J, Abdelalim A et al (2019) Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol 18:357–375

    Article  Google Scholar 

  2. Brooks-Kayal AR, Bath KG, Berg AT, Galanopoulou AS, Holmes GL, Jensen FE et al (2013) Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy. Epilepsia 54:44–60

    Article  PubMed  PubMed Central  Google Scholar 

  3. Quintas R, Alvarez AS, Koutsogeorgou E, Cerniauskaite M, Meucci P, Sattin D et al (2012) The relationship between health-related quality-of-life and disability in patients with controlled epilepsy: a cross-sectional observational study. Am J Phys Med 91:S31–S38

    Article  Google Scholar 

  4. Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69:16–24

    Article  CAS  PubMed  Google Scholar 

  5. Shimada T, Takemiya T, Sugiura H, Yamagata K (2014) Role of inflammatory mediators in the pathogenesis of epilepsy. Mediators Inflamm. https://doi.org/10.1155/2014/901902

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L (2014) The role of oxidative stress during inflammatory processes. Biol Chem 395:203–230

    Article  CAS  PubMed  Google Scholar 

  7. Martinc B, Grabnar I, Vovk T (2012) The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr Neuropharmacol 10:328–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goldberg EM, Coulter DA (2013) Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci 14:337–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Macleod S, Appleton RE (2007) The new antiepileptic drugs. Arch Dis Childhood-Edu Pract 92:182–188

    Article  CAS  Google Scholar 

  10. Schachter SC (2002) Current evidence indicates that antiepileptic drugs are anti-ictal, not antiepileptic. Epilepsy Res 50:67–70

    Article  CAS  PubMed  Google Scholar 

  11. Temkin NR (2001) Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 42:515–524

    Article  CAS  PubMed  Google Scholar 

  12. Panayiotopoulos CP (2007) Old versus new antiepileptic drugs: the SANAD study. Lancet 370:313–314

    Article  CAS  PubMed  Google Scholar 

  13. Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V (2018) The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia 59:2179–2193

    Article  PubMed  Google Scholar 

  14. Shou JW, Shaw P-C (2022) Therapeutic efficacies of berberine against neurological disorders: an update of pharmacological effects and mechanisms. Cells 11:796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kulkarni SK, Dhir A (2010) Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phyther Res An Int J Devoted to Pharmacol Toxicol Eval Nat Prod Deriv 24:317–324

    CAS  Google Scholar 

  16. Kumar A, Chopra K, Mukherjee M, Pottabathini R, Dhull DK (2015) Current knowledge and pharmacological profile of berberine: an update. Eur J Pharmacol 761:288–297

    Article  CAS  PubMed  Google Scholar 

  17. Guna V, Saha L, Bhatia A, Banerjee D, Chakrabarti A (2018) Anti-oxidant and anti-apoptotic effects of berberine in pentylenetetrazole-induced kindling model in rat. J epilepsy Res Korean Epilepsy Society 8:66–73

    Google Scholar 

  18. Mojarad TB, Roghani M (2014) The anticonvulsant and antioxidant effects of berberine in kainate-induced temporal lobe epilepsy in rats. Basic Clin Neurosci Iranian Neurosci Society 5:124–130

    Google Scholar 

  19. Sadeghnia HR, Taji AR, Forouzanfar F, Hosseinzadeh H (2017) Berberine attenuates convulsing behavior and extracellular glutamate and aspartate changes in 4-aminopyridine treated rats. Iran J Basic Med Sci 20:588

    PubMed  PubMed Central  Google Scholar 

  20. Hua W, Ding L, Chen Y, Gong B, He J, Xu G (2007) Determination of berberine in human plasma by liquid chromatography–electrospray ionization–mass spectrometry. J Pharm Biomed Anal 44:931–937

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Hao H, Xie H, Lv HUA, Liu C, Wang G (2009) Oxidative demethylenation and subsequent glucuronidation are the major metabolic pathways of berberine in rats. J Pharm Sci 98:4391–4401

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y-T, Hao H-P, Xie H-G, Lai L, Wang Q, Liu C-X et al (2010) Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats. Drug Metab Dispos ASPET 38:1779–1784

    Article  CAS  Google Scholar 

  23. Maeng H-J, Yoo H-J, Kim I-W, Song I-S, Chung S-J, Shim C-K (2002) P-glycoprotein–mediated transport of berberine across Caco-2 cell monolayers. J Pharm Sci 91:2614–2621

    Article  CAS  PubMed  Google Scholar 

  24. Kumar G, Malhotra S, Shafiq N, Pandhi P, Khuller GK, Sharma S (2011) In vitro physicochemical characterization and short term in vivo tolerability study of ethionamide loaded PLGA nanoparticles: potentially effective agent for multidrug resistant tuberculosis. J Microencapsul 28(8):717–728

    Article  CAS  PubMed  Google Scholar 

  25. Shigwan H, Saklani A, Hamrapurkar PD, Mane T, Bhatt P (2013) HPLC method development and validation for quantification of berberine from Berberis aristata and Berberis tinctoria. Int J Appl Sci Eng 11(2):203–211

    Google Scholar 

  26. Gupta YK, Veerendra Kumar MH, Srivastava AK (2003) Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav 74:579–585

    Article  CAS  PubMed  Google Scholar 

  27. Mehla J, Reeta KH, Gupta P, Gupta YK (2010) Protective effect of curcumin against seizures and cognitive impairment in a pentylenetetrazole-kindled epileptic rat model. Life Sci 87:596–603

    Article  CAS  PubMed  Google Scholar 

  28. Lüttjohann A, Fabene PF, van Luijtelaar G. A revised Racine’s scale for PTZ-induced seizures in rats. Physiol Behav [Internet]. 2009 [cited 2018 Feb 19];98:579–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19772866

  29. Myung RJ, Petko M, Judkins AR, Schears G, Ittenbach RF, Waibel RJ et al (2004) Regional low-flow perfusion improves neurologic outcome compared with deep hypothermic circulatory arrest in neonatal piglets. J Thorac Cardiovasc Surg 127:1051–1057

    Article  PubMed  Google Scholar 

  30. Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24:525–529

    Article  CAS  PubMed  Google Scholar 

  31. Hanada T, Hashizume Y, Tokuhara N, Takenaka O, Kohmura N, Ogasawara A et al (2011) Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia 52:1331–1340

    Article  CAS  PubMed  Google Scholar 

  32. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol Elsevier 47:379–391

    Article  CAS  Google Scholar 

  33. Classics Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J biol Chem 193:265–275

    Article  Google Scholar 

  34. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem [Internet]. 1979 [cited 2018 Feb 19];95:351–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/36810

  35. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C et al (2004) Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med Nature Publishing Group 10:1344–1351

    Article  CAS  Google Scholar 

  36. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  37. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med [Internet]. 1967 [cited 2018 Feb 19];70:158–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6066618

  38. Lowry H, Nira J, Rosebrough A, Farr L, Randall J (1994) protein measurement with the folin phenol reagent. Anal Biochem 217:220–230

    Google Scholar 

  39. Chateauvieux S, Morceau F, Dicato M, Diederich M (2010) Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol. https://doi.org/10.1155/2010/479364

    Article  PubMed  PubMed Central  Google Scholar 

  40. Thomson SR, Mamulpet V, Adiga S (2017) Sodium valproate induced alopecia: a case series. J Clin Diagn Res 11:1–2

    Google Scholar 

  41. Szaflarski JP, Nazzal Y, Dreer LE (2014) Post-traumatic epilepsy: current and emerging treatment options. Neuropsychiatr Dis Treat 10:1469

    Article  PubMed  PubMed Central  Google Scholar 

  42. Miziak B, Konarzewska A, Ułamek-Kozioł M, Dudra-Jastrzębska M, Pluta R, Czuczwar SJ (2020) Anti-epileptogenic effects of antiepileptic drugs. Int J Mol Sci 21:2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frantseva MV, Perez Velazquez JL, Tsoraklidis G, Mendonca AJ, Adamchik Y, Mills LR et al (2000) Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 97:431–435

    Article  CAS  PubMed  Google Scholar 

  44. Naseer MI, Ullah N, Ullah I, Koh PO, Lee HY, Park MS et al (2011) Vitamin C protects against ethanol and PTZ-induced apoptotic neurodegeneration in prenatal rat hippocampal neurons. Synapse 65:562–571

    Article  CAS  PubMed  Google Scholar 

  45. Zhu X, Dong J, Han B, Huang R, Zhang A, Xia Z et al (2017) Neuronal nitric oxide synthase contributes to PTZ kindling epilepsy-induced hippocampal endoplasmic reticulum stress and oxidative damage. Front Cell Neurosci. https://doi.org/10.3389/fncel.2017.00377

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV, de Vasconcelos A, Wasterlain C et al (1998) Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J Neurosci Society for Neuroscience 18:3273–3281

    Article  CAS  Google Scholar 

  47. Anaeigoudari A, Hosseini M, Karami R, Vafaee F, Mohammadpour T, Ghorbani A et al (2016) The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats. Avicenna J phytomedicine 6:223–235

    CAS  Google Scholar 

  48. Ding K, Wang H, Xu J, Li T, Zhang L, Ding Y et al (2014) Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: The Nrf2-ARE signaling pathway as a potential mechanism. Free Radic Biol Med Elsevier 73:1–11

    Article  CAS  Google Scholar 

  49. Shin E-J, Jeong JH, Chung YH, Kim W-K, Ko K-H, Bach J-H et al (2011) Role of oxidative stress in epileptic seizures. Neurochem Int NIH Public Access 59:122–137

    Article  CAS  Google Scholar 

  50. Wang W, Wu Y, Zhang G, Fang H, Wang H, Zang H et al (2014) Activation of Nrf2-ARE signal pathway protects the brain from damage induced by epileptic seizure. Brain Res Elsevier 1544:54–61

    Article  CAS  Google Scholar 

  51. Zhang JM, Hong Y, Yan W, Chen S, Sun CR (2010) The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin 31:1421–1430

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf 2:INrf(Keap1) Signaling in oxidative stress. Free Radic Biol Med 47:1304–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Muiswinkel FL, Kuiperij HB (2005) The Nrf2-ARE Signalling pathway: promising drug target to combat oxidative stress in neurodegenerative disorders. Curr Drug Targets CNS Neurol Disord 4:267–281

    Article  PubMed  Google Scholar 

  54. Ma Q (2013) Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Benedict AL, Mountney A, Hurtado A, Bryan KE, Schnaar RL, Dinkova-Kostova AT et al (2012) Neuroprotective effects of sulforaphane after contusive spinal cord injury. J Neurotrauma 29:2576–2586

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol NIH Public Access 100:30–47

    Article  CAS  Google Scholar 

  57. Das RK, Brar SK, Verma M (2016) Recent advances in the biomedical applications of fumaric acid and its ester derivatives: The multifaceted alternative therapeutics. Pharmacol Reports Elsevier 68:404–414

    Article  CAS  Google Scholar 

  58. Wang W, Wang W, ping, Zhang G liang, Wu Y fen, Xie T, Kan M chen, et al (2013) Activation of Nrf2-ARE signal pathway in hippocampus of amygdala kindling rats. Neurosci Lett 543:58–63

    Article  CAS  PubMed  Google Scholar 

  59. Niture SK, Jaiswal AK (2012) Nrf2 Protein Up-regulates Antiapoptotic Protein Bcl-2 and Prevents Cellular Apoptosis. J Biol Chem 287:9873–9886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Henshall DC, Chen J, Simon RP (2000) Involvement of caspase-3-like protease in the mechanism of cell death following focally evoked limbic seizures. J Neurochem 74:1215–1223

    Article  CAS  PubMed  Google Scholar 

  61. Engel T, Henshall DC (2009) Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis? Int J Physiol Pathophysiol Pharmacol 1:97–115

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Liou AKF, Clark RS, Henshall DC, Yin X-M, Chen J (2003) To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol Elsevier 69:103–142

    Article  CAS  Google Scholar 

  63. Henshall DC, Simon RP (2005) Epilepsy and Apoptosis Pathways. J Cereb Blood Flow Metab 25:1557–1572

    Article  CAS  PubMed  Google Scholar 

  64. Li G, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F et al (2011) Cytokines and epilepsy. Seizure 20:249–256

    Article  PubMed  Google Scholar 

  65. Kwon YS, Pineda E, Auvin S, Shin D, Mazarati A, Sankar R (2013) Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in the immature brain. J Neuroinflammation 10:1–6

    Article  Google Scholar 

  66. Walker L, Sills GJ (2012) Inflammation and epilepsy: the foundations for a new therapeutic approach in epilepsy? Epilepsy Curr American Epilepsy Society 12:8–12

    Article  Google Scholar 

  67. Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803

    Article  CAS  PubMed  Google Scholar 

  68. De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F et al (2000) Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 12:2623–2633

    Article  PubMed  Google Scholar 

  69. Minami M, Kuraishi Y, Satoh M (1991) Effects of kainic acid on messenger RNA levels of IL-1β, IL-6, TNFα and LIF in the rat brain. Biochem Biophys Res Commun 176:593–598

    Article  CAS  PubMed  Google Scholar 

  70. Voutsinos-Porche B, Koning E, Kaplan H, Ferrandon A, Guenounou M, Nehlig A et al (2004) Temporal patterns of the cerebral inflammatory response in the rat lithium–pilocarpine model of temporal lobe epilepsy. Neurobiol Dis 17:385–402

    Article  CAS  PubMed  Google Scholar 

  71. Wood PL (2003) Microglia: Roles of microglia in chronic neurodegenerative diseases. In: PL W (ed) Neuroinflammation Mech Manag. Humana Press, Totowa, pp 3–27

    Google Scholar 

  72. Dingledine R, Varvel NH, Dudek FE (2014) When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv Exp Med Biol. NIH Public Access 813:109–122

    Google Scholar 

  73. Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S et al (2008) Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76:1485–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wilms H, Sievers J, Rickert U, Rostami-yazdi M, Mrowietz U, Lucius R (2010) Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1β, TNF-α and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 7:1–8

    Article  Google Scholar 

  75. Vandermeeren M, Janssens S, Wouters H, Borghmans I, Borgers M, Beyaert R (2001) Dimethylfumarate is an Inhibitor of Cytokine-Induced Nuclear Translocation of NF-κB1, But Not RelA in Normal Human Dermal Fibroblast Cells. J Invest Dermatol Elsevier Masson SAS 116:124–130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance provided by Senior Technician Mr. P.J. Thomas and Mr. Sunil Sharma. Also, we acknowledge Mr. Anil Kumar (Ph.D Student) for his assistance in making the graphical abstract.

Funding

This research was supported by a research fellowship provided to the student from Indian Council of Medical Research (ICMR), New Delhi, India. Indian Council of Medical Research

Author information

Authors and Affiliations

Authors

Contributions

Lekha Saha and Puja kumari : Protocol writing, Performing experiments, Data collections and analysis, Manuscript writing and final editing. Kajal Rawat, Vipasha Gautam, Neha Singh and Arushi Sandhu: Performing experiments, Manuscript writing and editing. Alka Bhatia, V R Sinha and Amitava Chakrabarti: Data Analysis,Manuscript writing and editing.

Corresponding author

Correspondence to Lekha Saha.

Ethics declarations

Competing Interest

The researcher claims no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, L., Kumari, P., Rawat, K. et al. Neuroprotective effect of Berberine Nanoparticles Against Seizures in Pentylenetetrazole Induced Kindling Model of Epileptogenesis: Role of Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Mechanisms. Neurochem Res 48, 3055–3072 (2023). https://doi.org/10.1007/s11064-023-03967-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03967-z

Keywords

Navigation