Skip to main content
Log in

Altered Topographic Distribution and Enhanced Neuronal Expression of Adenosine-Metabolizing Enzymes in Rat Hippocampus and Cortex from Early to late Adulthood

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present study demonstrates altered topographic distribution and enhanced neuronal expression of major adenosine-metabolizing enzymes, i.e. ecto-5ʹ-nucleotidase (eN) and tissue non-specific alkaline phosphatase (TNAP), as well as adenosine receptor subtype A2A in the hippocampus and cortex of male rats from early to late adulthood (3, 6, 12 and 15 months old males). The significant effect of age was demonstrated for the increase in the activity and the protein expression of eN and TNAP. At 15-m, enzyme histochemistry demonstrated enhanced expression of eN in synapse-rich hippocampal and cortical layers, whereas the upsurge of TNAP was observed in the hippocampal and cortical neuropil, rather than in cells and layers where two enzymes mostly reside in 3-m old brain. Furthermore, a dichotomy in A1R and A2AR expression was demonstrated in the cortex and hippocampus from early to late adulthood. Specifically, a decrease in A1R and enhancement of A2AR expression were demonstrated by immunohistochemistry, the latter being almost exclusively localized in hippocampal pyramidal and cortical superficial cell layers. We did not observe any glial upregulation of A2AR, which was common for both advanced age and chronic neurodegeneration. Taken together, the results imply that the adaptative changes in adenosine signaling occurring in neuronal elements early in life may be responsible for the later prominent glial enhancement in A2AR-mediated adenosine signaling, and neuroinflammation and neurodegeneration, which are the hallmarks of both advanced age and age-associated neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

Derived data supporting the findings of this study are available from the corresponding author on request.

References

  1. Jin K (2010) “Modern Biological Theories of Aging.,” Aging and disease, vol. 1, no. 2, pp. 72–74, Oct.

  2. Mattson MP, Arumugam TV (Jun. 2018) “Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. ” Cell metabolism 27(6):1176–1199. https://doi.org/10.1016/j.cmet.2018.05.011

  3. Drayer BP (Mar. 1988) “Imaging of the aging brain. Part I. Normal findings. ” Radiol 166(3):785–796. https://doi.org/10.1148/radiology.166.3.3277247

  4. Deary IJ et al (2009) Age-associated cognitive decline. ” Br Med Bull 92:135–152. https://doi.org/10.1093/bmb/ldp033

    Article  PubMed  Google Scholar 

  5. Shimohama S et al (1998) “Differential expression of rat brain synaptic proteins in development and aging.,” Biochemical and biophysical research communications, vol. 251, no. 1, pp. 394–398, https://doi.org/10.1006/bbrc.1998.9480

  6. Pannese E (2011) “Morphological changes in nerve cells during normal aging.,” Brain structure & function, vol. 216, no. 2, pp. 85–89, Jun. https://doi.org/10.1007/s00429-011-0308-y

  7. Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ (Jan. 2018) The Aging Astrocyte Transcriptome from Multiple Regions of the Mouse Brain. ” Cell reports 22(1):269–285. https://doi.org/10.1016/j.celrep.2017.12.039

  8. Cunha RA (Dec. 2016) How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 139(6):1019–1055. https://doi.org/10.1111/jnc.13724

  9. Kovács Z, Juhász G, Palkovits M, Dobolyi A, Kékesi KA (2011) “Area, age and gender dependence of the nucleoside system in the brain: a review of current literature. ” Curr Top Med Chem 11(8):1012–1033. https://doi.org/10.2174/156802611795347636

    Article  PubMed  Google Scholar 

  10. Fredholm BB, Chern Y, Franco R, Sitkovsky M (Dec. 2007) Aspects of the general biology of adenosine A2A signaling. ” Progress in neurobiology 83(5):263–276. https://doi.org/10.1016/j.pneurobio.2007.07.005

  11. Cunha RA (Jan. 2008) Different cellular sources and different roles of adenosine: A1 receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted A2A receptor-mediated facilitation of plasticity. ” Neurochemistry international 52:1–2. https://doi.org/10.1016/j.neuint.2007.06.026

  12. Pazzagli M, Corsi C, Fratti S, Pedata F, Pepeu G (Jun. 1995) Regulation of extracellular adenosine levels in the striatum of aging rats. ” Brain research 684(1):103–106. https://doi.org/10.1016/0006-8993(95)00471-2

  13. Rex CS, Kramár EA, Colgin LL, Lin B, Gall CM, Lynch G (2005) “Long-term potentiation is impaired in middle-aged rats: regional specificity and reversal by adenosine receptor antagonists.,” The Journal of neuroscience: the official journal of the Society for Neuroscience, vol. 25, no. 25, pp. 5956–5966, Jun. https://doi.org/10.1523/JNEUROSCI.0880-05.2005

  14. Mackiewicz M et al (Feb. 2006) Age-related changes in adenosine metabolic enzymes in sleep/wake regulatory areas of the brain. ” Neurobiol aging 27(2):351–360. https://doi.org/10.1016/j.neurobiolaging.2005.01.015

  15. Gharib A, Sarda N, Chabannes B, Cronenberger L, Pacheco H (Mar. 1982) “The regional concentrations of S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, and adenosine in rat brain. ” J neurochemistry 38(3):810–815. https://doi.org/10.1111/j.1471-4159.1982.tb08702.x

  16. Murillo-Rodriguez E, Blanco-Centurion C, Gerashchenko D, Salin-Pascual RJ, Shiromani PJ (2004) The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats. ” Neurosci 123(2):361–370. https://doi.org/10.1016/j.neuroscience.2003.09.015

    Article  CAS  Google Scholar 

  17. Kovács Z et al (Apr. 2010) “Gender- and age-dependent changes in nucleoside levels in the cerebral cortex and white matter of the human brain. ” Brain research bulletin 81(6):579–584. https://doi.org/10.1016/j.brainresbull.2009.10.010

  18. Chu S et al (Jan. 2013) Regulation of adenosine levels during cerebral ischemia. ” Acta pharmacologica Sinica 34(1):60–66. https://doi.org/10.1038/aps.2012.127

  19. Zimmermann H, Zebisch M, Sträter N (Sep. 2012) “Cellular function and molecular structure of ecto-nucleotidases. ” Purinergic signalling 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

  20. Street SE et al (Jul. 2013) “Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate adenosine in the dorsal spinal cord. ” The Journal of neuroscience: the official journal of the Society for Neuroscience 33:11314–11322. https://doi.org/10.1523/JNEUROSCI.0133-13.2013

  21. Latini S, Pedata F (Nov. 2001) “Adenosine in the central nervous system: release mechanisms and extracellular concentrations. ” J neurochemistry 79(3):463–484. https://doi.org/10.1046/j.1471-4159.2001.00607.x

  22. Lopes LV, Cunha RA, Ribeiro JA (Dec. 1999) Cross talk between A(1) and A(2A) adenosine receptors in the hippocampus and cortex of young adult and old rats. ” J Neurophysiol 82(6):3196–3203. https://doi.org/10.1152/jn.1999.82.6.3196

  23. Linden J “Adenosine in tissue protection and tissue regeneration.,”Molecular pharmacology, vol. 67, no. 5, pp.1385–1387, May 2005. https://doi.org/10.1124/mol.105.011783

  24. Augusto E et al (Jul. 2013) “Ecto-5’-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. ” The Journal of neuroscience: the official journal of the Society for Neuroscience 33(28):11390–11399. https://doi.org/10.1523/JNEUROSCI.5817-12.2013

  25. Grković I, Mitrović N, Dragić M, Adžić M, Drakulić D, Nedeljković N (Mar. 2019) “Spatial Distribution and Expression of Ectonucleotidases in Rat Hippocampus After Removal of Ovaries and Estradiol Replacement. ” Mol Neurobiol 56(3):1933–1945. https://doi.org/10.1007/s12035-018-1217-3

  26. Langer D, Hammer K, Koszalka P, Schrader J, Robson S, Zimmermann H (Nov. 2008) Distribution of ectonucleotidases in the rodent brain revisited. ” Cell and tissue research 334(2):199–217. https://doi.org/10.1007/s00441-008-0681-x

  27. Mitrović N et al (Sep. 2016) Regional and sex-related differences in modulating effects of female sex steroids on ecto-5’-nucleotidase expression in the rat cerebral cortex and hippocampus. ” Gen Comp Endocrinol 235:100–107. https://doi.org/10.1016/j.ygcen.2016.06.018

  28. Mitrović N, Dragić M, Zarić M, Drakulić D, Nedeljković N, Grković I (2019) Estrogen receptors modulate ectonucleotidases activity in hippocampal synaptosomes of male rats. Neurosci Lett 712. https://doi.org/10.1016/j.neulet.2019.134474

  29. Rosemberg DB et al (2008) “Kinetic characterization of adenosine deaminase activity in zebrafish (Danio rerio) brain.,” Comparative biochemistry and physiology Part B, Biochemistry & molecular biology, vol. 151, no. 1, pp. 96–101, https://doi.org/10.1016/j.cbpb.2008.06.001

  30. Dong H, Zu X, Zheng P, Zhang D (Mar. 2015) “A rapid enzymatic assay for high-throughput screening of adenosine-producing strains. ” Microb Biotechnol 8(2):230–238. https://doi.org/10.1111/1751-7915.12189

  31. Buchet R, Millán JL, Magne D (2013) “Multisystemic functions of alkaline phosphatases.,” Methods in molecular biology (Clifton, NJ), vol. 1053, pp. 27–51, https://doi.org/10.1007/978-1-62703-562-0_3

  32. Mitrović N et al (Mar. 2017) “17β-Estradiol-Induced Synaptic Rearrangements Are Accompanied by Altered Ectonucleotidase Activities in Male Rat Hippocampal Synaptosomes. ” J Mol neuroscience: MN 61(3):412–422. https://doi.org/10.1007/s12031-016-0877-6

  33. Adzic M, Nedeljkovic N (2018) Unveiling the Role of Ecto-5’-Nucleotidase/CD73 in Astrocyte Migration by Using Pharmacological Tools. ” Front Pharmacol 9:153. https://doi.org/10.3389/fphar.2018.00153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stanojević I et al (Jun. 2011) “Ontogenetic profile of ecto-5’-nucleotidase in rat brain synaptic plasma membranes. ” Int J Dev neuroscience: official J Int Soc Dev Neurosci 29(4):397–403. https://doi.org/10.1016/j.ijdevneu.2011.03.003

  35. Fuchs JL (1991) “5’-Nucleotidase activity increases in aging rat brain. ” Neurobiol aging 12(5):523–530. https://doi.org/10.1016/0197-4580(91)90083-V

    Article  CAS  PubMed  Google Scholar 

  36. Nwafor DC, Brichacek AL, Ali A, Brown CM (May 2021) Tissue-Nonspecific Alkaline Phosphatase in Central Nervous System Health and Disease: A Focus on Brain Microvascular Endothelial Cells. ” Int J Mol Sci 22(10). https://doi.org/10.3390/ijms22105257

  37. Sánchez-Melgar A, Albasanz JL, Pallàs M, Martín M (Oct. 2020) Adenosine Metabolism in the Cerebral Cortex from Several Mice Models during Aging. ” Int J Mol Sci 21(19). https://doi.org/10.3390/ijms21197300

  38. Sengupta P (2013) “The Laboratory Rat: Relating Its Age With Human’s.,” International journal of preventive medicine, vol. 4, no. 6, pp. 624–630, Jun.

  39. Fonta C, Négyessy L, Renaud L, Barone P (2004) “Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission.,” Cerebral cortex (New York, NY: 1991), vol. 14, no. 6, pp. 595–609, Jun. https://doi.org/10.1093/cercor/bhh021

  40. Lavrnja I et al (Apr. 2015) Expression of a second ecto-5’-nucleotidase variant besides the usual protein in symptomatic phase of experimental autoimmune encephalomyelitis. ” J Mol neuroscience: MN 55(4):898–911. https://doi.org/10.1007/s12031-014-0445-x

  41. Dragić M, Mitrović N, Adžić M, Nedeljković N, Grković I (2021) “Microglial- and Astrocyte-Specific Expression of Purinergic Signaling Components and Inflammatory Mediators in the Rat Hippocampus During Trimethyltin-Induced Neurodegeneration. ” ASN neuro 13:17590914211044882. https://doi.org/10.1177/17590914211044882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dragić M et al (Jun. 2021) Downregulation of CD73/A(2A)R-Mediated Adenosine Signaling as a Potential Mechanism of Neuroprotective Effects of Theta-Burst Transcranial Magnetic Stimulation in Acute Experimental Autoimmune Encephalomyelitis. ” Brain sciences 11(6). https://doi.org/10.3390/brainsci11060736

  43. et al., “Brain endothelial cell tissue-nonspecific alkaline phosphatase (TNAP) activity promotes maintenance of barrier integrity via the ROCK pathway,”bioRxiv, p. 2021.03.25.437097, Jan. 2021. https://doi.org/10.1101/2021.03.25.437097

  44. Nwafor DC et al (2020) “Loss of tissue-nonspecific alkaline phosphatase (TNAP) enzyme activity in cerebral microvessels is coupled to persistent neuroinflammation and behavioral deficits in late sepsis.,” Brain, behavior, and immunity, vol. 84, pp. 115–131, https://doi.org/10.1016/j.bbi.2019.11.016

  45. Zamanian JL et al (May 2012) Genomic analysis of reactive astrogliosis. ” The Journal of neuroscience: the official journal of the Society for Neuroscience 32(18):6391–6410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012

  46. Chen MB et al (2020) Brain Endothelial Cells Are Exquisite Sensors of Age-Related Circulatory Cues. ” Cell reports 30(13):4418–4432. https://doi.org/10.1016/j.celrep.2020.03.012. .e4, Mar

  47. Diaz-Hernandez M, Hernandez F, Miras-Portugal MT, Avila J (2015) “TNAP Plays a Key Role in Neural Differentiation as well as in Neurodegenerative Disorders. ” Sub-cellular biochemistry 76:375–385. https://doi.org/10.1007/978-94-017-7197-9_18

    Article  CAS  PubMed  Google Scholar 

  48. Négyessy L et al (Jan. 2011) Layer-specific activity of tissue non-specific alkaline phosphatase in the human neocortex. ” Neurosci 172:406–418. https://doi.org/10.1016/j.neuroscience.2010.10.049

  49. Brun-Heath I et al (Mar. 2011) “Differential expression of the bone and the liver tissue non-specific alkaline phosphatase isoforms in brain tissues. ” Cell and tissue research 343(3):521–536. https://doi.org/10.1007/s00441-010-1111-4

  50. Geiger JD, Nagy JI (Jan. 1987) Ontogenesis of adenosine deaminase activity in rat brain. ” J neurochemistry 48(1):147–153. https://doi.org/10.1111/j.1471-4159.1987.tb13139.x

  51. Flinn AM, Gennery AR (Apr. 2018) Adenosine deaminase deficiency: a review. ” Orphanet journal of rare diseases 13(1):65. https://doi.org/10.1186/s13023-018-0807-5

  52. Allen SP et al (Mar. 2019) Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. ” Brain: a journal of neurology 142(3):586–605. https://doi.org/10.1093/brain/awy353

  53. Cunha RA, Johansson B, Fredholm BB, Ribeiro JA, Sebastião AM (Aug. 1995) Adenosine A2A receptors stimulate acetylcholine release from nerve terminals of the rat hippocampus. ” Neurosci Lett 196:1–2. https://doi.org/10.1016/0304-3940(95)11833-I

  54. Temido-Ferreira M et al (2020) “Age-related shift in LTD is dependent on neuronal adenosine A(2A) receptors interplay with mGluR5 and NMDA receptors.,” Molecular psychiatry, vol. 25, no. 8, pp. 1876–1900, https://doi.org/10.1038/s41380-018-0110-9

  55. Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA (May 2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. ” Biochim et Biophys acta 1808(5):1380–1399. https://doi.org/10.1016/j.bbamem.2010.12.001

  56. Pagnussat N et al (Aug. 2015) Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice. ” Br J Pharmacol 172:3831–3845. https://doi.org/10.1111/bph.13180

  57. Santiago AR et al (2014) “Role of microglia adenosine A(2A) receptors in retinal and brain neurodegenerative diseases.,” Mediators of inflammation, vol. p. 465694, 2014. https://doi.org/10.1155/2014/465694

  58. Carvalho K et al (Nov. 2019) “Exacerbation of C1q dysregulation, synaptic loss and memory deficits in tau pathology linked to neuronal adenosine A2A receptor. ” Brain: a journal of neurology 142(11):3636–3654. https://doi.org/10.1093/brain/awz288

  59. Nedeljkovic N (Jun. 2019) Complex regulation of ecto-5’-nucleotidase/CD73 and A(2A)R-mediated adenosine signaling at neurovascular unit: A link between acute and chronic neuroinflammation. ” Pharmacol Res 144:99–115. https://doi.org/10.1016/j.phrs.2019.04.007

  60. Borroto-Escuela DO, Hinz S, Navarro G, Franco R, Müller CE, Fuxe K (2018) Understanding the Role of Adenosine A2AR Heteroreceptor Complexes in Neurodegeneration and Neuroinflammation. ” Front Neurosci 12:43. https://doi.org/10.3389/fnins.2018.00043

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, Grant Nos. 451-03-68/2020-14/200178 and 451-03-1/2021-16/14-0902102.

Author information

Authors and Affiliations

Authors

Contributions

MD, IG, and NN designed the study. MD, AS, KM, and MZ participated in the preparation of brain tissue sections for histological and immunohistological study. MD, AS, and MZ performed immunohistochemistry and immunofluorescence, while MA performed confocal microscopy. MD and IG performed enzyme histochemistry & microscopy. MD, KM, and AS prepared the P2 fractions. MD and MZ performed Western blotting and quantification. MD and NN wrote the manuscript. All authors discussed and edited the manuscript and approved the final version.

Corresponding author

Correspondence to Nadezda Nedeljkovic.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragic, M., Stekic, A., Zeljkovic, M. et al. Altered Topographic Distribution and Enhanced Neuronal Expression of Adenosine-Metabolizing Enzymes in Rat Hippocampus and Cortex from Early to late Adulthood. Neurochem Res 47, 1637–1650 (2022). https://doi.org/10.1007/s11064-022-03557-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03557-5

Keywords

Navigation