Skip to main content
Log in

Elucidating the Possible Role of FoxO in Depression

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Forkhead box-O (FoxO) transcriptional factors perform essential functions in several physiological and biological processes. Recent studies have shown that FoxO is implicated in the pathophysiology of depression. Changes in the upstream mediators of FoxOs including brain-derived neurotrophic factor (BDNF) and protein kinase B have been associated with depressive disorder and the antidepressant agents are known to alter the phosphorylation of FoxOs. Moreover, FoxOs might be regulated by serotonin or noradrenaline signaling and the hypothalamic-pituitary-adrenal (HPA)-axis,both of them are associated with the development of the depressive disorder. FoxO also regulates neural morphology, synaptogenesis, and neurogenesis in the hippocampus, which accounts for the pathogenesis of the depressive disorder. The current article underlined the potential functions of FoxOs in the etiology of depressive disorder and formulate few essential proposals for further investigation. The review also proposes that FoxO and its signal pathway might establish possible therapeutic mediators for the management of depressive disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hegerl U, Rummel-Kluge C, Varnik A, Arensman E, Koburger N (2013) Alliances against depression - a community based approach to target depression and to prevent suicidal behaviour. Neurosci Biobehav Rev 37:2404–2409

    Article  PubMed  Google Scholar 

  2. Gold PW, Chrousos GP (2013) Melancholic and atypical subtypes of depression represent distinct pathophysiological entities: CRH, neural circuits, and the diathesis for anxiety and depression. Mol Psychiatry 18:632–634

    Article  PubMed  CAS  Google Scholar 

  3. Kiejna A, Pawlowski T, Dudek D, Lojko D, Siwek M, Roczen R, Rybakowski JK (2010) The utility of Mood Disorder Questionnaire for the detection of bipolar diathesis in treatment-resistant depression. J Affect Disord 124:270–274

    Article  PubMed  Google Scholar 

  4. Mahar I, Bambico FR, Mechawar N, Nobrega JN (2014) Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. NeurosciBiobehav Rev 38:173–192

    CAS  Google Scholar 

  5. Werner FM (2013) Classical neurotransmitters and neuropeptides involved in major depression in a multi-neurotransmitter system: a focus on antidepressant drugs. Curr Med Chem 20:4853–4858 CoveñasR ) .

    Article  PubMed  CAS  Google Scholar 

  6. Morilak DA, Frazer A (2004) Antidepressants and brain monoaminergic systems: a dimensional approach to understanding their behavioural effects in depression and anxiety disorders. Int J Neuropsycho pharmacol 7:193–218

    Article  CAS  Google Scholar 

  7. Kavalali ET, Monteggia LM (2012) Synaptic mechanisms underlying rapid antidepressant action of ketamine. Am J Psychiatry 169:1150–1156

    Article  PubMed  Google Scholar 

  8. Pilar-Cuellar F, Vidal R, Pazos A (2012) Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain-derived neurotrophic factor, β-catenin and antidepressant-like effects. Br J Pharmacol 165:1046–1057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Seo MK, Lee CH, Cho HY, Lee JG, Lee BJ, Kim JE, Seol W, Kim YH, Park SW (2014) Effects of antidepressant drugs on synaptic protein levels and dendritic outgrowth in hippocampal neuronal cultures. Neuropharmacology 79:222–233

    Article  PubMed  CAS  Google Scholar 

  10. Fournier JC, DeRubeis RJ, Hollon SD, Dimidjian S, Amsterdam JD, Shelton RC, Fawcett J (2010) Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA 303:47–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Oudega ML, van Exel E, Wattjes MP, Comijs HC, Scheltens P, Barkhof F, Eikelenboom P, de Craen AJ, Beekman AT, Stek ML (2011) White matter hyperintensities, medial temporal lobe atrophy, cortical atrophy, and response to electroconvulsive therapy in severely depressed elderly patients. J Clin Psychiatry 72:104–112

    Article  PubMed  Google Scholar 

  12. Hollon SD, DeRubeis RJ, Fawcett J, Amsterdam JD, Shelton RC, Zajecka J, Young PR, Gallop R (2014) Effect of cognitive therapy with antidepressant medications vs antidepressants alone on the rate of recovery in major depressive disorder: a randomized clinical trial. JAMA Psychiatry 71:1157–1164

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT (2008) Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med 5:e45

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mitchell AJ (2006) Two-week delay in onset of action of antidepressants: new evidence. Br J Psychiatry 188:105–106

    Article  PubMed  Google Scholar 

  15. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    Article  PubMed  CAS  Google Scholar 

  16. Rice ME, Cragg SJ (2008) Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res Rev 58:303–313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Calissi G, Lam EWF, Link W (2020) Therapeutic strategies targeting FOXO transcription factors. Nature Reviews Drug Discovery 1–18

  18. Polter A, Yang S, Zmijewska AA, van Groen T, Paik JH, Depinho RA, Peng SL, Jope RS, Li X (2009) Forkhead box, class O transcription factors in brain: regulation and behavioral manifestation. Biol Psychiatry 65:150–159

    Article  PubMed  CAS  Google Scholar 

  19. Weeks KR, Dwyer DS, Aamodt EJ (2010) Antipsychotic drugs activate the C. elegans akt pathway via the DAF-2 insulin/IGF-1 receptor. ACS Chem Neurosci 1:463–473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zheng W, Zeng Z, Bhardwaj SK, Jamali S, Srivastava LK (2013) Lithium normalizes amphetamine-induced changes in striatal FoxO1 phosphorylation and behaviors in rats. Neuroreport 24:560–565

    Article  PubMed  CAS  Google Scholar 

  21. Wang H, Quirion R, Little PJ, Cheng Y, Feng ZP, Sun HS, Xu J, Zheng W (2015) Forkhead box O transcription factors as possible mediators in the development of major depression. Neuropharmacology 99:527–537. https://doi.org/10.1016/j.neuropharm.2015.08.020

    Article  PubMed  CAS  Google Scholar 

  22. Zheng WH, Kar S, Quirion R (2002) FKHRL1 and its homologs are new targets of nerve growth factor Trk receptor signaling. J Neurochem 80:1049–1061

    Article  PubMed  CAS  Google Scholar 

  23. Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G (2005) Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry 57:1068–1072

    Article  PubMed  CAS  Google Scholar 

  24. Angelucci F, Brene S, Mathé AA (2005) BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 10:345–352

    Article  PubMed  CAS  Google Scholar 

  25. Mojsilovic-Petrovic J, Nedelsky N, Boccitto M, Mano I, Georgiades SN, Zhou W, Liu Y, Neve RL, Taylor JP, Driscoll M, Clardy J, Merry D, Kalb RG (2009) FOXO3a is broadly neuroprotective in vitro and in vivo against insults implicated in motor neuron diseases. J Neurosci 29:8236–8247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhu W, Bijur GN, Styles NA, Li X (2004) Regulation of FOXO3a by brain-derived neurotrophic factor in differentiated human SH-SY5Y neuroblastoma cells. Brain Res Mol Brain Res 126:45–56

    Article  PubMed  CAS  Google Scholar 

  27. Zheng WH, Quirion R (2009) Glutamate acting on N-methyl-D-aspartate receptors attenuates insulin-like growth factor-1 receptor tyrosine phosphorylation and its survival signaling properties in rat hippocampal neurons. J Biol Chem 284:855–861

    Article  PubMed  CAS  Google Scholar 

  28. Wang H, Zhou X, Huang J, Mu N, Guo Z, Wen Q, Wang R, Chen S, Feng ZP, Zheng W (2013) The role of Akt/FoxO3a in the protective effect of venlafaxine against corticosterone-induced cell death in PC12 cells. Psychopharmacology 228:129–141

    Article  PubMed  CAS  Google Scholar 

  29. Mao Z, Liu L, Zhang R, Li X (2007) Lithium reduces FoxO3a transcriptional activity by decreasing its intracellular content. Biol Psychiatry 62:1423–1430

    Article  PubMed  CAS  Google Scholar 

  30. Liang B, Moussaif M, Kuan CJ, Gargus JJ, Sze JY (2006) Serotonin targets the DAF-16/FOXO signaling pathway to modulate stress responses. Cell Metab 4:429–440

    Article  PubMed  CAS  Google Scholar 

  31. Qin W, Pan J, Qin Y, Lee DN, Bauman WA, Cardozo C (2014) Identification of functional glucocorticoid response elements in the mouse FoxO1 promoter. Biochem Biophys Res Commun 450:979–983

    Article  PubMed  CAS  Google Scholar 

  32. Jaitovich A, Angulo M, Lecuona E, Dada LA, Welch LC, Cheng Y, Gusarova G, Ceco E, Liu C, Shigemura M, Barreiro E, Patterson C, Nader GA, Sznajder JI (2015) High CO2 levels cause skeletal muscle atrophy via AMP-activated kinase (AMPK), FoxO3a protein, and muscle-specific Ring finger protein 1 (MuRF1). J Biol Chem 290:9183–9194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Aranha MM, Solá S, Low WC, Steer CJ, Rodrigues CM (2009) Caspases and p53 modulate FOXO3A/Id1 signaling during mouse neural stem cell differentiation. J Cell Biochem 107:748–758

    Article  PubMed  CAS  Google Scholar 

  34. Cheng Z (2019) The FoxO–autophagy axis in health and disease. Trends in Endocrinology Metabolism 30:658–671

    Article  PubMed  CAS  Google Scholar 

  35. Zhang S, Huan W, Wei H, Shi J, Fan J, Zhao J, Shen A, Teng H (2013) FOXO3a/p27kip1 expression and essential role after acute spinal cord injury in adult rat. J Cell Biochem 114:354–365

    Article  PubMed  CAS  Google Scholar 

  36. Borre YE, Panagaki T, Koelink PJ, Morgan ME, Hendriksen H, Garssen J, Kraneveld AD, Olivier B, Oosting RS (2014) Neuroprotective and cognitive enhancing effects of a multi-targeted food intervention in an animal model of neurodegeneration and depression. Neuropharmacology 79:738–749

    Article  PubMed  CAS  Google Scholar 

  37. Anacker C, Cattaneo A, Musaelyan K, Zunszain PA, Horowitz M, Molteni R et al (2013) Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc Natl Acad Sci USA 110:8708–8713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tia N, Singh AK, Pandey P, Azad CS, Chaudhary P, Gambhir IS (2018) Role of Forkhead Box O (FOXO) transcription factor in aging and diseases. Gene 648:97–105

    Article  PubMed  CAS  Google Scholar 

  39. Santo EE, Paik J (2018) FOXO in neural cells and diseases of the nervous system. Current Topics in Developmental Biology 127:105–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Maiese K (2021) Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regeneration Research 16:448

    Article  PubMed  Google Scholar 

  41. Sanphui P, Das AK, Biswas SC (2020) FoxO3a requires BAF57, a subunit of chromatin remodeler SWI/SNF complex for induction of PUMA in a model of Parkinson’s disease. J Neurochemdoi. https://doi.org/10.1111/jnc.14969

    Article  Google Scholar 

  42. Liu W, Li Y, Luo B (2020a) Current perspective on the regulation of FOXO4 and its role in disease progression. Cell Mol Life Sci 77:651–663

    Article  PubMed  CAS  Google Scholar 

  43. Hu W, Yang Z, Yang W, Han M, Xu B, Yu Z et al (2019) Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: a panoramic view. Progress in Neurobiol 181:101645

    Article  CAS  Google Scholar 

  44. Lam EW, Brosens JJ, Gomes AR, Koo CY (2013) Forkhead box proteins: tuning forks for transcriptional harmony. Nat Rev Cancer 13:482–495

    Article  PubMed  CAS  Google Scholar 

  45. Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421–426

    Article  PubMed  CAS  Google Scholar 

  46. Biggs WR, Cavenee WK, Arden KC (2001) Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse. Mamm Genome 12:416–425

    Article  PubMed  CAS  Google Scholar 

  47. Salih DA, Rashid AJ, Colas D et al (2012) FoxO6 regulates memory consolidation and synaptic function. Genes Dev 26:2780–2801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Link W (2019) Introduction to FOXO biology. FOXO Transcription Factors 1–9

  49. Kim S, Koh H (2017) Role of FOXO transcription factors in crosstalk between mitochondria and the nucleus. J Bioenerg Biomembr 49:335–341

    Article  PubMed  CAS  Google Scholar 

  50. Liang R, Ghaffari S (2018) Stem cells seen through the FOXO lens: an evolving paradigm. Current Topics in Developmental Biology 127:23–47

    Article  PubMed  CAS  Google Scholar 

  51. Eijkelenboom A, Burgering BM (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14:83–97

    Article  PubMed  CAS  Google Scholar 

  52. Zhao Y, Wang Y, Zhu WG (2011) Applications of post-translational modifications of FoxO family proteins in biological functions. J Mol Cell Biol 3:276–282

    Article  PubMed  CAS  Google Scholar 

  53. Boccitto M, Kalb RG (2011) Regulation of Foxo-dependent transcription by post-translational modifications. Curr Drug Targets 12:1303–1310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Brown AK, Webb AE (2018) Regulation of FOXO factors in mammalian cells. Current tTopics in Developmental Biology 127:165–192

    Article  CAS  Google Scholar 

  55. Woodgett JR (2005) Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 17:150–157

    Article  PubMed  CAS  Google Scholar 

  56. Wen Q, Wang H, Little PJ, Quirion R, Zheng W (2012) Forkhead family transcription factor FoxO and neural differentiation. Neurogenetics 13:105–113

    Article  PubMed  CAS  Google Scholar 

  57. van der Vos KE, Coffer PJ (2011) The extending network of FOXO transcriptional target genes. Antioxid Redox Signal 14:579–592

    Article  PubMed  CAS  Google Scholar 

  58. Hui RC, Francis RE, Guest SK, Costa JR, Gomes AR, Myatt SS, Brosens JJ, Lam EW (2008) Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 (MDR1) in K562 leukemic cells. Mol Cancer Ther 7:670–678

    Article  PubMed  CAS  Google Scholar 

  59. Kodani N, Nakae J (2020) Tissue-specific metabolic regulation of FOXO-binding protein: FOXO does not act alone. Cells 9:702

    Article  PubMed Central  CAS  Google Scholar 

  60. Burgering BM, Kops GJ (2002) Cell cycle and death control: long live Forkheads. Trends Biochem Sci 27:352–360

    Article  PubMed  CAS  Google Scholar 

  61. Chen AT, Guo C, Dumas KJ, Ashrafi K, Hu PJ (2013) Effects of Caenorhabditis elegans sgk-1 mutations on lifespan, stress resistance, and DAF-16/FoxO regulation. Aging Cell 12:932–940

    Article  PubMed  CAS  Google Scholar 

  62. Huang H, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120:2479–2487

    Article  PubMed  CAS  Google Scholar 

  63. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X et al (2008) ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10:138–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R, Hung MC (2004) IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117:225–237

    Article  PubMed  CAS  Google Scholar 

  65. Ho KK, McGuire VA, Koo CY, Muir KW, de Olano N, Maifoshie E, Kelly DJ, McGovern UB, Monteiro LJ, Gomes AR, Nebreda AR, Campbell DG, Arthur JS, Lam EW (2012) Phosphorylation of FOXO3a on Ser-7 by p38 promotes its nuclear localization in response to doxorubicin. J Biol Chem 287:1545–1555

    Article  PubMed  CAS  Google Scholar 

  66. Sunters A, Madureira PA, Pomeranz KM, Aubert M, Brosens JJ, Cook SJ, Burgering BM, Coombes RC, Lam EW (2006) Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res 66:212–220

    Article  PubMed  CAS  Google Scholar 

  67. Greer EL, Banko MR, Brunet A (2009) AMP-activated protein kinase and FoxO transcription factors in dietary restriction-induced longevity. Ann N Y Acad Sci 1170:688–692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Sanphui P, Biswas SC (2013) FoxO3a is activated and executes neuron death via Bim in response to beta-amyloid. Cell Death Dis 4:e625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Yuan Z, Becker EB, Merlo P, Yamada T, DiBacco S, Konishi Y, Schaefer EM, Bonni A (2008) Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science 319:1665–1668

    Article  PubMed  CAS  Google Scholar 

  70. Huang H, Regan KM, Lou Z, Chen J, Tindall DJ (2006) CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314:294–297

    Article  PubMed  CAS  Google Scholar 

  71. Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K, Fukamizu A (2005) Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA 102:11278–11283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Qiang L, Banks AS, Accili D (2010) Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization. J Biol Chem 285:27396–27401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    Article  PubMed  CAS  Google Scholar 

  74. Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W, Accili D (2005) FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab 2:153–163

    Article  PubMed  CAS  Google Scholar 

  75. Jacobs KM, Pennington JD, Bisht KS, Aykin-Burns N, Kim HS, Mishra M et al (2008) SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci 4:291–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119:2758–2771

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Wang F, Chan CH, Chen K, Guan X, Lin HK, Tong Q (2012) Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 31:1546–1557

    Article  PubMed  CAS  Google Scholar 

  78. Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145:607–621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Aoki M, Jiang H, Vogt PK (2004) Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc NatlAcad Sci USA 101:13613–13617

    Article  CAS  Google Scholar 

  80. Brenkman AB, de Keizer PL, van den Broek NJ, Jochemsen AG, Burgering BM (2008) Mdm2 induces mono-ubiquitination of FOXO4. PLoS One 3:e2819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kato S, Ding J, Pisck E, Jhala US, Du K (2008) COP1 functions as a FoxO1 ubiquitin E3 ligase to regulate FoxO1-mediated gene expression. J Biol Chem 283:35464–35473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Milkiewicz M, Roudier E, Doyle JL, Trifonova A, Birot O, Haas TL (2011) Identification of a mechanism underlying regulation of the anti-angiogenic forkhead transcription factor FoxO1 in cultured endothelial cells and ischemic muscle. Am JPathol 178:935–944

    Article  CAS  Google Scholar 

  83. Yamagata K, Daitoku H, Takahashi Y, Namiki K, Hisatake K, Kako K, Mukai H, Kasuya Y, Fukamizu A (2008) Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell 32:221–231

    Article  PubMed  CAS  Google Scholar 

  84. Takahashi Y, Daitoku H, Hirota K, Tamiya H, Yokoyama A, Kako K, Nagashima Y et al (2011) Asymmetric arginine dimethylation determines life span in C. elegans by regulating forkhead transcription factor DAF-16. Cell Metab 13:505–516

    Article  PubMed  CAS  Google Scholar 

  85. Xie Q, Hao Y, Tao L, Peng S, Rao C, Chen H, You H, Dong MQ, Yuan Z (2012) Lysine methylation of FOXO3 regulates oxidative stress-induced neuronal cell death. EMBO Rep 13:371–377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kuo M, Zilberfarb V, Gangneux N, Christeff N, Issad T (2008) O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett 582:829–834

    Article  PubMed  CAS  Google Scholar 

  87. Ho SR, Wang K, Whisenhunt TR, Huang P, Zhu X, Kudlow JE, Paterson AJ (2010) O-GlcNAcylation enhances FOXO4 transcriptional regulation in response to stress. FEBS Lett 584:49–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wang X, Hu S, Liu L (2017) Phosphorylation and acetylation modifications of FOXO3a: independently or synergistically? Oncol Lett 13:2867–2872. https://doi.org/10.3892/ol.2017.5851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Rached MT, Kode A, Xu L et al (2010) FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab 11:147–160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Alblowi J, Kayal RA, Siqueria M et al (2009) High levels of tumor necrosis factor-ð¼ contribute to accelerated loss of cartilage in diabetic fracture healing. Am J Pathol 175:1574–1585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Alikhani M, Alikhani Z, Graves DT (2005) FOXO1 functions as a master switch that regulates gene expression necessary for tumor necrosis factor-inducedfibroblast. J Biol Chem 280:12096–12102

    Article  PubMed  CAS  Google Scholar 

  92. Alikhani M, MacLellan CM, Vora S, Raptis M, Trackman PC, Graves DT (2007) Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the FOXO1 transcription factor. Am J Physiol Cell Physiol 292:C850–C856

    Article  PubMed  CAS  Google Scholar 

  93. Alikhani M, Roy S, Graves DT (2010) FOXO1 plays an essential role in apoptosis of retinal pericytes. Molecular Vision 16:408–415

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Bakker WJ, Blázquez-Domingo M, Kolbus A et al (2004) FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol 164:175–184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Allen DL, Unterman TG (2007) Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. The American. J Physiol: Cell Physiol 292:C188–C199

    CAS  Google Scholar 

  96. Al-Masri M, Krishnamurthy M, Li J et al (2010) Effect of Forkhead box O1 (FOXO1) on beta cell development in the human fetal pancreas. Diabetologia 53:699–711

    Article  PubMed  CAS  Google Scholar 

  97. Ponugoti B, Zhang C, Xu F et al (2013) FOXO1 promotes wound healing through the up-regulation of TGF-beta1 and prevention of oxidative stress. J  Cell Biol 203:327–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Ambrogini E, Almeida M, Martin-Millan M et al (2010) FoxO mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metabolism 11:136–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Lu Q, Zhai Y, Cheng Q et al (2013) The Akt-FoxO3a-manganese superoxide dismutase pathway is involved in the regulation of oxidative stress in diabetic nephropathy. Experimental Physiology 98:934–945

    Article  PubMed  CAS  Google Scholar 

  100. Chiribau CB, Cheng L, Cucoranu IC, Yu YS, Clempus RE, Sorescu D (2008) FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblasts. J Biol Chem 283:8211–8217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Speckmann B, Walter PL, Alili L et al (2008) Selenoprotein P expression is controlled through interaction of the coactivator PGC-1 with FoxO1a and hepatocyte nuclear factor 4 transcription factors. Hepatology 48:1998–2006

    Article  PubMed  CAS  Google Scholar 

  102. Hsu CP, Zhai P Yamamoto T et al (2010) Silent information regulator 1 protects the heart from ischemia. /reperfusionCirculation 122:2170–2182

    Google Scholar 

  103. Ni YG, Berenji K, Wang N et al (2006) Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation 114:1159–1168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Ito Y, Daitoku H, Fukamizu A (2009) FOXO1 increases proinflammatory gene expression by inducing C/EBP in TNF-treated adipocytes. Biochem Biophys Res Commun 378:290–295

    Article  PubMed  CAS  Google Scholar 

  105. Su D, Coudriet GM, Dae HK et al (2009) FOXO1 links insulin resistance to proinflammatory cytokine IL- production in macrophages. Diabetes 58:2624–2633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Fan W, Morinaga H, Kim JJ et al (2010) FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. The EMBO Journal 29:4223–4236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Behl Y, Krothapalli P, Desta T, Roy S, Graves DT (2009) FOXO1 plays an important role in enhanced microvascular cell apoptosis and microvascular cell loss in type 1 and type 2 diabetic rats. Diabetes 58:917–925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Brown J, Suttles J, Wang H, Graves DT, Martin M (2011) Mammalian target of rapamycin complex 2 (mTORC2) negatively regulates toll-like receptor 4-mediated inflammatory response via FoxO1. J Biol Chem 286:44295–44305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7:83–105

    Article  PubMed  CAS  Google Scholar 

  110. Maiese K, Hou J, Chong ZZ, Shang YC (2009) A fork in the path: developing therapeutic inroads with foxOproteins. Oxidative Medicine and Cellular Longevity 2:119–129

    Article  PubMed  PubMed Central  Google Scholar 

  111. Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24:7410–7425

    Article  PubMed  CAS  Google Scholar 

  112. Uhlenhaut NH, Treier M (2011) Forkhead transcription factors in ovarian function. Reproduction 142:489–495

    Article  PubMed  CAS  Google Scholar 

  113. Edmonds JW, Prasain JK, Dorand D et al (2010) Insulin /FOXO signaling regulates ovarian prostaglandins critical for reproduction. Developmental Cell 19:858–871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and-independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11:297–305

    Article  PubMed  CAS  Google Scholar 

  115. Zemva J, Schilbach K, Stöhr O, Moll L, Franko A, Krone W, Wiesner RJ, Schubert M (2012) Central FoxO3a and FoxO6 expression is down-regulated in obesity induced diabetes but not in aging. Exp Clin Endocrinol Diabetes 120:340–350

    PubMed  CAS  Google Scholar 

  116. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278:35959–35967

    Article  PubMed  CAS  Google Scholar 

  117. Campbell S, Macqueen G (2004) The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 29:417–426

    PubMed  PubMed Central  Google Scholar 

  118. Hoekman MF, Jacobs FM, Smidt MP, Burbach JP (2006) Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain. Gene Expr Patterns 6:134–140

    Article  PubMed  CAS  Google Scholar 

  119. Sun Z, da Fontoura CS, Moreno M, Holton NE, Sweat M, Sweat Y et al (2018) FoxO6 regulates Hippo signaling and growth of the craniofacial complex. PLoS Genetics 14:e1007675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Magno LA, Santana CV, Sacramento EK, Rezende VB, Cardoso MV, Maurício-da-Silva L, Neves FS, Miranda DM, De Marco LA, Correa H, Romano-Silva MA (2011) Genetic variations in FOXO3A are associated with bipolar disorder without confering vulnerability for suicidal behavior. J Affect Disord 133:633–637

    Article  PubMed  CAS  Google Scholar 

  121. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Muller JM, Morelli E, Ansorge M, Gingrich JA (2011) Serotonin transporter deficient mice are vulnerable to escape deficits following inescapable shocks. Genes Brain Behav 10:166–175

    Article  PubMed  CAS  Google Scholar 

  123. Zhou W, Chen L, Yang S, Li F, Li X (2012) Behavioral stress-induced activation of FoxO3a in the cerebral cortex of mice. Biol Psychiatry 71:583–592

    Article  PubMed  CAS  Google Scholar 

  124. Castrén E, Rantamäki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70:289–297

    Article  PubMed  CAS  Google Scholar 

  125. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA (2004) Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 36:131–137

    Article  PubMed  CAS  Google Scholar 

  126. Hsiung SC, Adlersberg M, Arango V, Mann JJ, Tamir H, Liu KP (2003) Attenuated 5-HT1A receptor signaling in brains of suicide victims: involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinase. J Neurochem 87:182–194

    Article  PubMed  CAS  Google Scholar 

  127. Pereira PA, Bicalho MA, de Moraes EN, Malloy-Diniz L, Bozzi IC, Nicolato R, Valadão DR, Miranda DM, Romano-Silva MA (2014) Genetic variant of AKT1 and AKTIP associated with late-onset depression in a Brazilian population. Int J Geriatr Psychiatry 29:399–405

    Article  PubMed  Google Scholar 

  128. Cattaneo A, Cattane N, Malpighi C, Czamara D, Suarez A, Mariani N et al (2018) FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol Psychiatry 23:2192–2208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Zhao M, Chen L, Qiao Z, Zhou J, Zhang T, Zhang W et al (2020) Association Between FoxO1, A2M, and TGF-β1, Environmental Factors, and Major Depressive Disorder. Frontiers in Psychiatry 11:675

    Article  PubMed  PubMed Central  Google Scholar 

  130. Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J, Griem A, Kovacs M, Ott J, Merikangas KR (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA 301:2462–2471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Kim N, Dempsey CM, Kuan CJ, Zoval JV, O’Rourke E, Ruvkun G, Madou MJ, Sze JY (2007) Gravity force transduced by the MEC-4/MEC-10 DEG/ENaC channel modulates DAF-16/FoxO activity in Caenorhabditis elegans. Genetics 177:835–845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Lopez-Figueroa AL, Norton CS, Lopez-Figueroa MO, Armellini-Dodel D, Burke S, Akil H, López JF, Watson SJ (2004) Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry 55:225–233

    Article  PubMed  CAS  Google Scholar 

  133. Celada P, Puig M, Amargós-Bosch M, Adell A, Artigas F (2004) The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci 29:252–265

    PubMed  PubMed Central  Google Scholar 

  134. Schmid CL, Bohn LM (2010) Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ss-arrestin2/Src/Akt signaling complex in vivo. J Neurosci 30:13513–13524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Liang C, Chen W, Zhi X, Ma T, Xia X, Liu H, Zhang Q, Hu Q, Zhang Y, Bai X, Liang T (2013) Serotonin promotes the proliferation of serum-deprived hepatocellular carcinoma cells via upregulation of FOXO3a. Mol Cancer 12:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Kode A, Mosialou I, Silva BC, Rached MT, Zhou B, Wang J, Townes TM, Hen R, DePinho RA, Guo XE, Kousteni S (2012) FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin. J Clin Invest 122:3490–3503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Breuillaud L, Rossetti C, Meylan EM, Mérinat C, Halfon O, Magistretti PJ, Cardinaux JR (2012) Deletion of CREB-regulated transcription coactivator 1 induces pathological aggression, depression-related behaviors, and neuroplasticity genes dysregulation in mice. Biol Psychiatry 72:528–536

    Article  PubMed  CAS  Google Scholar 

  138. Musazzi L, Mallei A, Tardito D, Gruber SH, El Khoury A, Racagni G, Mathé AA, Popoli M (2010) Early-life stress and antidepressant treatment involve synaptic signaling and Erk kinases in a gene-environment model of depression. J Psychiatr Res 44:511–520

    Article  PubMed  Google Scholar 

  139. Chen YJ, Hsiao PW, Lee MT, Mason JI, Ke FC, Hwang JJ (2007) Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGFbeta1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells. J Endocrinol 192:405–419

    Article  PubMed  CAS  Google Scholar 

  140. Lee JW, Chen H, Pullikotil P, Quon MJ (2011) Protein kinase A-alpha directly phosphorylates FoxO1 in vascular endothelial cells to regulate expression of vascular cellular adhesion molecule-1 mRNA. J Biol Chem 286:6423–6432

    Article  PubMed  CAS  Google Scholar 

  141. Asada S, Daitoku H, Matsuzaki H, Saito T, Sudo T, Mukai H, Iwashita S, Kako K, Kishi T, Kasuya Y, Fukamizu A (2007) Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal 19:519–527

    Article  PubMed  CAS  Google Scholar 

  142. Anacker C, Zunszain PA, Carvalho LA, Pariante CM (2011) The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrino 36:415–425

    Article  CAS  Google Scholar 

  143. Raison CL, Miller AH (2003) When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry 160:1554–1565

    Article  PubMed  Google Scholar 

  144. Lutzner N, Kalbacher H, Krones-Herzig A, Rosl F (2012) FOXO3 is a glucocorticoid receptor target and regulates LKB1 and its own expression based on cellular AMP levels via a positive autoregulatory loop. PLoS One 7:e42166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6:472–483

    Article  PubMed  CAS  Google Scholar 

  147. Poulsen RC, Carr AJ, Hulley PA (2011) Protection against glucocorticoid-induced damage in human tenocytes by modulation of ERK, Akt, and forkhead signaling. Endocrinology 152:503–514

    Article  PubMed  CAS  Google Scholar 

  148. Buse P, Tran SH, Luther E, Phu PT, Aponte GW, Firestone GL (1999) Cell cycle and hormonal control of nuclear-cytoplasmic localization of the serum- and glucocorticoid-inducible protein kinase, Sgk, in mammary tumor cells. A novel convergence point of anti-proliferative and proliferative cell signaling pathways. J Biol Chem 274:7253–7263

    Article  PubMed  CAS  Google Scholar 

  149. Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME (2001b) Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 21:952–965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403

    Article  PubMed  CAS  Google Scholar 

  151. Budziszewska B, Jaworska-Feil L, Kajta M, Lasoń W (2000) Antidepressant drugs inhibit glucocorticoid receptor-mediated gene transcription—a possible mechanism. Br J Pharmacol 130:1385–1393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Schäffner I, Minakaki G, Khan MA, Balta EA, Schlötzer-Schrehardt U, Schwarz TJ et al (2018) FoxO function is essential for maintenance of autophagic flux and neuronal morphogenesis in adult neurogenesis. Neuron 99:1188–1203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Goncalves JT, Schafer ST, Gage FH (2016a) Adult neurogenesis inthe hippocampus: from stem cells to behavior. Cell 167:897–914

    Article  PubMed  CAS  Google Scholar 

  155. Paik JH, Ding Z, Narurkar R, Ramkissoon S, Muller F, Kamoun WS, Chae SS, Zheng H, Ying H, Mahoney J et al (2009) FoxOscooperativelyregulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5:540–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Renault VM, Rafalski VA, Morgan AA, Salih DA, Brett JO, Webb AE, Villeda SA, Thekkat PU, Guillerey C, Denko NC et al (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5:527–539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Yeo H, Lyssiotis CA, Zhang Y, Ying H, Asara JM, Cantley LC, Paik JH (2013) FoxO3 coordinates metabolic pathways to maintain redoxbalance in neural stem cells. EMBO J 32:2589–2602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Hwang I, Oh H, Santo E, Kim DY, Chen JW, Bronson RT, Locasale JW, Na Y, Lee J, Reed S et al (2018) FOXO protects against ageprogressiveaxonal degeneration. Aging Cell 17. https://doi.org/10.1111/acel.12701

    Article  Google Scholar 

  159. Kim DY, Hwang I, Muller FL, Paik JH (2015) Functional regulation of FoxO1 in neural stem cell differentiation. Cell Death Differentiation 22:2034–2045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Cui M, Huang Y, Tian C, Zhao Y, Zheng J (2011) FOXO3a inhibits TNF-α‐and IL‐1β‐induced astrocyte proliferation: implication for reactive astrogliosis. Glia 59:641–654

    Article  PubMed  PubMed Central  Google Scholar 

  161. Arnone D, McIntosh AM, Ebmeier KP, Munafo MR, Anderson IM (2012) Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsycho Pharmacol 22:1–16

    Article  CAS  Google Scholar 

  162. Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338:68–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Ota KT, Liu RJ, Voleti B, Maldonado-Aviles JG, Duric V, Iwata M, Dutheil S, Duman C, Boikess S, Lewis DA, Stockmeier CA, DiLeone RJ, Rex C, Aghajanian GK, Duman RS (2014) REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat Med 20:531–535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F (1995) Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 14:717–730

    Article  PubMed  CAS  Google Scholar 

  165. Carson MJ, Behringer RR, Brinster RL, McMorris FA (1993) Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10:729–740

    Article  PubMed  CAS  Google Scholar 

  166. Kennedy LM, Pham SC, Grisho KA (2013) Nonautonomous regulation of neuronal migration by insulin signaling, DAF-16/FOXO, and PAK-1. Cell Rep 4:996–1009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Schmidt-Strassburger U, Schips TG, Maier HJ, Kloiber K, Mannella F, Braunstein KE, Holzmann K, Ushmorov A, Liebau S, Boeckers TM, Wirth T (2012) Expression of constitutively active FoxO3 in murine forebrain leads to a loss of neural progenitors. Faseb J 26:4990–5001

    Article  PubMed  CAS  Google Scholar 

  168. Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K (2005) The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 280:20814–20823

    Article  PubMed  CAS  Google Scholar 

  169. Castets P, Ruegg MA (2013) MTORC1 determines autophagy through ULK1 regulation in skeletal muscle. Autophagy 9:1435–1437

    Article  PubMed  CAS  Google Scholar 

  170. Sanchez AM, Candau RB, Bernardi H (2014) FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 71:1657–1671

    Article  PubMed  CAS  Google Scholar 

  171. Lee HK, Rocnik E, Fu Q, Kwon B, Zeng L, Walsh K, Querfurth H (2012) Foxo/atrogin induction in human and experimental myositis. Neurobiol Dis 46:463–475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Rafalski VA, Brunet A (2011) Energy metabolism in adult neural stem cell fate. Prog Neurobiol 93:182–203

    Article  PubMed  CAS  Google Scholar 

  173. Kim SY, Webb AE (2017) Neuronal functions of FOXO/DAF-16. Nutrition Healthy Aging 4:113–126

    Article  PubMed  Google Scholar 

  174. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Guilloux JP, Mendez-David I, Pehrson A, Guiard BP, Repérant C, Orvoën S, Gardier AM, Hen R, Ebert B, Miller S, Sanchez C, David DJ (2013) Antidepressant and anxiolytic potential of the multimodal antidepressant vortioxetine (Lu AA21004) assessed by behavioural and neurogenesis outcomes in mice. Neuropharmacology 73:147–159

    Article  PubMed  CAS  Google Scholar 

  176. Sairanen M, Lucas G, Ernfors P, Castren M, Castren E (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25:1089–1094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Lee J, Duan W, Mattson MP (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82:1367–1375

    Article  PubMed  CAS  Google Scholar 

  178. Waterhouse EG, An JJ, Orefice LL, Baydyuk M, Liao GY, Zheng K, Lu B, Xu B (2012) BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission. J Neurosci 32:14318–14330

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kwon M, Fernandez JR, Zegarek GF, Lo SB, Firestein BL (2011) BDNF-promoted increases in proximal dendrites occur via CREB-dependent transcriptional regulation of cypin. J Neurosci 31:9735–9745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. de la Torre-Ubieta L, Bonni A (2011) Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron 72:22–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Liu J, Meng F, Dai J, Wu M, Wang W, Liu C et al (2020) The BDNF FoxO1 Axis in the medial prefrontal cortex modulates depressive-like behaviors induced by chronic unpredictable stress in postpartum female mice. Molecular Brain 13:1–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Brummelte S, Galea LA (2010) Depression during pregnancy and postpartum: contribution of stress and ovarian hormones. Prog Neuro-Psychopharmacol Biol Psychiatry 34:766–776

    Article  CAS  Google Scholar 

  183. Lopresti AL, Drummond PD (2013) Obesity and psychiatric disorders: commonalities in dysregulated biological pathways and their implications for treatment. Prog Neuropsycho pharmacol Biol Psychiatry 45:92–99. doi:https://doi.org/10.1016/j.pnpbp. 2013.05.005

    Article  CAS  Google Scholar 

  184. Martinac M, Pehar D, Karlovic D, Babic D, Marcinko D, Jakovljevic M (2014) Metabolic syndrome, activity of the hypothalamic-pituitary-adrenalaxis and inflammatory mediators in depressive disorder. Acta Clin Croat   53: 55–71

    PubMed  Google Scholar 

  185. Noble EE, Billington CJ, Kotz CM, Wang C (2011) Thelighter side of BDNF. Am J Physiol Regul Integr Comp Physiol 300:1053–69. https://doi.org/10.1152/ajpregu

    Article  Google Scholar 

  186. Numakawa T, Adachi N, Richards M, Chiba S, Kunugi H (2013) Brain-derived neurotrophic factor and glucocorticoids: reciprocal influence on the central nervous system. Neuroscience 239:157–172. https://doi.org/10.1016/j.neuroscience. 2012.09.073

    Article  PubMed  CAS  Google Scholar 

  187. Behl T, Kaur I, Sehgal A, Singh S, Zengin G, Negrut N et al (2021) Exploring the Genetic Conception of Obesity via the Dual Role of FoxO. Int J Mol Sci 22:3179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Webb AE, Pollina EA, Vierbuchen T, Urbán N, Ucar D, Leeman DS, Martynoga B, Sewak M, Rando TA, Guillemot F, Wernig M, Brunet A (2013) FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis. Cell Rep 4:477–491

    Article  PubMed  CAS  Google Scholar 

  189. Oishi K, Watatani K, Itoh Y, Okano H, Guillemot F, Nakajima K, Gotoh Y (2009) Selective induction of neocortical GABAergic neurons by the PDK1-Akt pathway through activation of Mash1. Proc Natl Acad Sci USA 106:13064–13069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Gregorian C, Nakashima J, Le Belle J, Ohab J, Kim R, Liu A, Smith KB, Groszer M, Garcia AD, Sofroniew MV, Carmichael ST, Kornblum HI, Liu X, Wu H (2009) Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J Neurosci 29:1874–1886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Bambico FR, Belzung C (2013) Novel insights into depression and antidepressants: a synergy between synaptogenesis and neurogenesis? Curr Top Behav Neurosci 15:243–291

    Article  PubMed  CAS  Google Scholar 

  192. Ayuso MI, Hernández-Jimenez M, Martin ME, Salinas M, Alcazar A (2010) New hierarchical phosphorylation pathway of the translational repressor eIF4E-binding protein 1 (4E-BP1) in ischemia-reperfusion stress. J Biol Chem 285:34355–34363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA (2013) Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol Cell Endocrinol 365:174–186

    Article  PubMed  CAS  Google Scholar 

  194. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Southgate RJ, Neill B, Prelovsek O, El-Osta A, Kamei Y, Miura S, Ezaki O, McLoughlin TJ, Zhang W, Unterman TG, Febbraio MA (2007) FOXO1 regulates the expression of 4E-BP1 and inhibits mTOR signaling in mammalian skeletal muscle. J Biol Chem 282:21176–21186

    Article  PubMed  CAS  Google Scholar 

  196. Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10:319–332

    Article  PubMed  CAS  Google Scholar 

  197. Nechipurenko IV, Broihier HT (2012) FoxO limits microtubule stability and is itself negatively regulated by microtubule disruption. J Cell Biol 196:345–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Zunszain PA, Horowitz MA, Cattaneo A, Lupi MM, Pariante CM (2013) Ketamine: synaptogenesis, immunomodulation and glycogen synthase kinase-3 as underlying mechanisms of its antidepressant properties. Mol Psychiatry 18:1236–1241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Shi HS, Zhu WL, Liu JF, Luo YX, Si JJ, Wang SJ, Xue YX, Ding ZB, Shi J, Lu L (2012) PI3K/Akt signaling pathway in the basolateral amygdala mediates the rapid antidepressant-like effects of trefoil factor 3. Neuro Psycho Pharmacol 37:2671–2683

    Article  CAS  Google Scholar 

  200. Krogh J, Rostrup E, Thomsen C, Elfving B, Videbech P, Nordentoft M (2014) The effect of exercise on hippocampal volume and neurotrophines in patients with major depression-a randomized clinical trial. J Affect Disord 165:24–30

    Article  PubMed  Google Scholar 

  201. Mikoteit T, Beck J, Eckert A, Hemmeter U, Brand S, Bischof R, Holsboer-Trachsler E, Delini-Stula A (2014) High baseline BDNF serum levels and early psychopathological improvement are predictive of treatment outcome in major depression. Psychopharmacology 231:2955–2965

    Article  PubMed  CAS  Google Scholar 

  202. Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H, Lopez JF, Thompson RC, Meng F, Stead JD, Walsh DM, Myers RM, Bunney WE, Watson SJ, Jones EG, Akil H (2004) Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci USA 101:15506–15511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Goffer Y, Xu D, Eberle SE, D’amour J, Lee M, Tukey D, Froemke RC, Ziff EB, Wang J (2013) Calcium-permeable AMPA receptors in the nucleus accumbens regulate depression-like behaviors in the chronic neuropathic pain state. J Neurosci 33:19034–19044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Tripp A, Kota RS, Lewis DA, Sibille E (2011) Reduced somatostatin in subgenual anterior cingulate cortex in major depression. Neurobiol Dis 42:116–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Andrus BM, Blizinsky K, Vedell PT, Dennis K, Shukla PK, Schaffer DJ, Radulovic J, Churchill GA, Redei EE (2012) Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol Psychiatry 17:49–61

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chitkara University, Punjab, India for providing the basic facilities for the completion of the current article.

Funding

This review article did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, T., Behl, T., Sehgal, A. et al. Elucidating the Possible Role of FoxO in Depression. Neurochem Res 46, 2761–2775 (2021). https://doi.org/10.1007/s11064-021-03364-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03364-4

Keywords

Navigation