Skip to main content
Log in

Inhibition of TNFR1 Attenuates LPS Induced Apoptosis and Inflammation in Human Nucleus Pulposus Cells by Regulating the NF-KB and MAPK Signalling Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Intervertebral disc degeneration (IDD) is accompanied by nucleus pulposus (NP) cell apoptosis, inflammation, and extracellular matrix degradation. Tumour necrosis factor receptor 1 (TNFR1) is a receptor of TNF-α, and is deeply involved in the processes of IDD. However, the effect of TNFR1 inhibition on IDD is not clear. Herein, we report that TNFR1 was increased in LPS-treated HNPCs. The aim of this study was to investigate the potential therapeutic effect of TNFR1 siRNA and selective antagonists of TNFR1 (GSK1995057) on HNPC damage. The results showed that the blockade of TNFR1 by TNFR1 siRNA and GSK1995057 effectively suppressed the cell viability loss, apoptosis, and inflammation induced by LPS in HNPCs. Furthermore, we found that TNFR1 siRNA and GSK1995057 inhibited activation of the NF-KB and MAPK signalling pathways in LPS-stimulated HNPCs. In summary, the blockade of TNFR1 effectively suppressed LPS-induced apoptosis and inflammation in HNPCs through the NF-KB and MAPK signalling pathways. This revealed that the blockade of TNFR1 may provide a potential therapeutic treatment for IDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IDD:

Intervertebral disc degeneration

HNPCs:

Human nucleus pulposus cells

NP:

Nucleus pulposus

TNF-α:

Tumour necrosis factor α

TNFR1:

Tumour necrosis factor receptor 1

TNFR2:

Tumour necrosis factor receptor 2

MMP-13:

Matrix metalloproteinase-13

ADAMTS-4:

A disintegrin and metalloproteinase with thrombospondin motifs 4

ADAMTS-5:

A disintegrin and metalloproteinase with thrombospondin motifs 5

NF-KB:

Nuclear factor-k-gene binding k

MAPK:

Mitogen-activated protein kinase

References

  1. Patrick N, Emanski E, Knaub MA (2014) Acute and chronic low back pain. Med Clin N Am 98(4):777–789. https://doi.org/10.1016/j.mcna.2014.03.005

    Article  PubMed  Google Scholar 

  2. Andrade P, Visser-Vandewalle V, Philippens M, Daemen MA, Steinbusch HW, Buurman WA, Hoogland G (2011) Tumor necrosis factor-α levels correlate with postoperative pain severity in lumbar disc hernia patients: opposite clinical effects between tumor necrosis factor receptor 1 and 2. Pain 152(11):2645–2652. https://doi.org/10.1016/j.pain.2011.08.012

    Article  CAS  PubMed  Google Scholar 

  3. Risbud MV, Shapiro IM (2014) Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol 10(1):44–56. https://doi.org/10.1038/nrrheum.2013.160

    Article  CAS  PubMed  Google Scholar 

  4. Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM, Risbud MV (2015) Disc in flames: roles of TNF-α and IL-1β in intervertebral disc degeneration. Eur Cell Mater 30:104–116. https://doi.org/10.22203/ecm.v030a08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Desai SB, Furst DE (2006) Problems encountered during anti-tumour necrosis factor therapy. Best Pract Res Clin Rheumatol 20(4):757–790. https://doi.org/10.1016/j.berh.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  6. Freeman BJ, Ludbrook GL, Hall S, Cousins M, Mitchell B, Jaros M, Wyand M, Gorman JR (2013) Randomized, double-blind, placebo-controlled, trial of transforaminal epidural etanercept for the treatment of symptomatic lumbar disc herniation. Spine 38(23):1986–1994. https://doi.org/10.1097/01.brs.0000435140.61593.4c

    Article  PubMed  Google Scholar 

  7. Ding NS, Hart A, De Cruz P (2016) Systematic review: predicting and optimising response to anti-TNF therapy in Crohn’s disease - algorithm for practical management. Aliment Pharmacol Ther 43(1):30–51. https://doi.org/10.1111/apt.13445

    Article  CAS  PubMed  Google Scholar 

  8. Papamichael K, Vermeire S (2015) Withdrawal of anti-tumour necrosis factor α therapy in inflammatory bowel disease. World J Gastroenterol 21(16):4773–4778. https://doi.org/10.3748/wjg.v21.i16.4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qu Y, Zhao G, Li H (2017) Forward and reverse signaling mediated by transmembrane tumor necrosis factor-alpha and TNF receptor 2: potential roles in an immunosuppressive tumor microenvironment. Front Immunol 8:1675. https://doi.org/10.3389/fimmu.2017.01675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Williams SK, Maier O, Fischer R, Fairless R, Hochmeister S, Stojic A, Pick L, Haar D, Musiol S, Storch MK, Pfizenmaier K, Diem R (2014) Antibody-mediated inhibition of TNFR1 attenuates disease in a mouse model of multiple sclerosis. PLoS ONE 9(2):e90117. https://doi.org/10.1371/journal.pone.0090117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shibata H, Yoshioka Y, Ohkawa A, Abe Y, Nomura T, Mukai Y, Nakagawa S, Taniai M, Ohta T, Mayumi T, Kamada H, Tsunoda S, Tsutsumi Y (2008) The therapeutic effect of TNFR1-selective antagonistic mutant TNF-alpha in murine hepatitis models. Cytokine 44(2):229–233. https://doi.org/10.1016/j.cyto.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  12. Steeland S, Van Ryckeghem S, Van Imschoot G, De Rycke R, Toussaint W, Vanhoutte L, Vanhove C, De Vos F, Vandenbroucke RE, Libert C (2017) TNFR1 inhibition with a Nanobody protects against EAE development in mice. Sci Rep 7(1):13646. https://doi.org/10.1038/s41598-017-13984-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shibata H, Yoshioka Y, Abe Y, Ohkawa A, Nomura T, Minowa K, Mukai Y, Nakagawa S, Taniai M, Ohta T (2009) The treatment of established murine collagen-induced arthritis with a TNFR1-selective antagonistic mutant TNF. Biomaterials 30(34):6638–6647

    Article  CAS  Google Scholar 

  14. Kitagaki M, Isoda K, Kamada H, Kobayashi T, Kikuchi M (2011) Novel TNF-α receptor 1 antagonist treatment attenuates arterial inflammation and intimal hyperplasia in mice. J Atheroscler Thromb 19(1):36–46

    Article  Google Scholar 

  15. Bertok S, Wilson MR, Morley PJ, de Wildt R, Bayliffe A, Takata M (2012) Selective inhibition of intra-alveolar p55 TNF receptor attenuates ventilator-induced lung injury. Thorax 67(3):244–251. https://doi.org/10.1136/thoraxjnl-2011-200590

    Article  PubMed  Google Scholar 

  16. Proudfoot A, Bayliffe A, O’Kane CM, Wright T, Serone A, Bareille PJ, Brown V, Hamid UI, Chen Y, Wilson R, Cordy J, Morley P, de Wildt R, Elborn S, Hind M, Chilvers ER, Griffiths M, Summers C, McAuley DF (2018) Novel anti-tumour necrosis factor receptor-1 (TNFR1) domain antibody prevents pulmonary inflammation in experimental acute lung injury. Thorax 73(8):723–730. https://doi.org/10.1136/thoraxjnl-2017-210305

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lin X, Lin Q (2020) MiRNA-495-3p attenuates TNF-α induced apoptosis and inflammation in human nucleus pulposus cells by targeting IL5RA. Inflammation. https://doi.org/10.1007/s10753-020-01254-5

    Article  PubMed  Google Scholar 

  18. Xu J, Liu S, Wang S, Qiu P, Chen P, Lin X, Fang X (2019) Decellularised nucleus pulposus as a potential biologic scaffold for disc tissue engineering. Mater Sci Eng C 99:1213–1225. https://doi.org/10.1016/j.msec.2019.02.045

    Article  CAS  Google Scholar 

  19. Wu X, Liu Y, Guo X, Zhou W, Wang L, Shi J, Tao Y, Zhu M, Geng D, Yang H, Mao H (2018) Prolactin inhibits the progression of intervertebral disc degeneration through inactivation of the NF-κB pathway in rats. Cell Death Dis 9(2):98. https://doi.org/10.1038/s41419-017-0151-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roberts S, Evans H, Trivedi J, Menage J (2006) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88:10–14. https://doi.org/10.2106/jbjs.F.00019

    Article  PubMed  Google Scholar 

  21. Wang C, Yu X, Yan Y, Yang W, Zhang S, Xiang Y, Zhang J, Wang W (2017) Tumor necrosis factor-α: a key contributor to intervertebral disc degeneration. Acta Biochim Biophys Sin 49(1):1–13. https://doi.org/10.1093/abbs/gmw112

    Article  CAS  PubMed  Google Scholar 

  22. Kozicky LK, Menzies SC, Zhao ZY, Vira T, Harnden K, Safari K, Del Bel KL, Turvey SE, Sly LM (2018) IVIg and LPS co-stimulation induces IL-10 production by human monocytes, which is compromised by an FcγRIIA disease-associated gene variant. Front Immunol 9:2676. https://doi.org/10.3389/fimmu.2018.02676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ge J, Yan Q, Wang Y, Cheng X, Song D, Wu C, Yu H, Yang H, Zou J (2020) IL-10 delays the degeneration of intervertebral discs by suppressing the p38 MAPK signaling pathway. Free Radic Biol Med 147:262–270. https://doi.org/10.1016/j.freeradbiomed.2019.12.040

    Article  CAS  PubMed  Google Scholar 

  24. Wang S, Wei J, Fan Y, Ding H, Tian H, Zhou X, Cheng L (2018) Progranulin is positively associated with intervertebral disc degeneration by interaction with IL-10 and IL-17 through TNF pathways. Inflammation 41(5):1852–1863. https://doi.org/10.1007/s10753-018-0828-1

    Article  CAS  PubMed  Google Scholar 

  25. Segiet A, Smykiewicz P, Kwiatkowski P, Żera T (2019) Tumour necrosis factor and interleukin 10 in blood pressure regulation in spontaneously hypertensive and normotensive rats. Cytokine 113:185–194. https://doi.org/10.1016/j.cyto.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  26. Zhang F, Zhao X, Shen H, Zhang C (2016) Molecular mechanisms of cell death in intervertebral disc degeneration (Review). Int J Mol Med 37(6):1439–1448. https://doi.org/10.3892/ijmm.2016.2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Newton K, Wickliffe KE, Maltzman A, Dugger DL, Reja R, Zhang Y, Roose-Girma M, Modrusan Z, Sagolla MS, Webster JD, Dixit VM (2019) Activity of caspase-8 determines plasticity between cell death pathways. Nature 575(7784):679–682. https://doi.org/10.1038/s41586-019-1752-8

    Article  CAS  PubMed  Google Scholar 

  28. Chen WL, Sheu JR, Hsiao CJ, Hsiao SH, Chung CL, Hsiao G (2014) Histone deacetylase inhibitor impairs plasminogen activator inhibitor-1 expression via inhibiting TNF-α-activated MAPK/AP-1 signaling cascade. Biomed Res Int 2014:231012. https://doi.org/10.1155/2014/231012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee IT, Lin CC, Cheng SE, Hsiao LD, Hsiao YC, Yang CM (2013) TNF-α induces cytosolic phospholipase A2 expression in human lung epithelial cells via JNK1/2- and p38 MAPK-dependent AP-1 activation. PLoS ONE 8(9):e72783. https://doi.org/10.1371/journal.pone.0072783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Studer RK, Aboka AM, Gilbertson LG, Georgescu H, Sowa G, Vo N, Kang JD (2007) p38 MAPK inhibition in nucleus pulposus cells: a potential target for treating intervertebral disc degeneration. Spine 32(25):2827–2833. https://doi.org/10.1097/BRS.0b013e31815b757a

    Article  PubMed  Google Scholar 

  31. Lai JL, Liu YH, Liu C, Qi MP, Liu RN, Zhu XF, Zhou QG, Chen YY, Guo AZ, Hu CM (2017) Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways. Inflammation 40(1):1–12. https://doi.org/10.1007/s10753-016-0447-7

    Article  CAS  PubMed  Google Scholar 

  32. Ni L, Zheng Y, Gong T, Xiu C, Li K, Saijilafu LB, Yang H, Chen J (2019) Proinflammatory macrophages promote degenerative phenotypes in rat nucleus pulpous cells partly through ERK and JNK signaling. J Cell Physiol 234(5):5362–5371. https://doi.org/10.1002/jcp.27507

    Article  CAS  PubMed  Google Scholar 

  33. Tu J, Li W, Zhang Y, Wu X, Song Y, Kang L, Liu W, Wang K, Li S, Hua W, Yang C (2017) Simvastatin inhibits IL-1β-induced apoptosis and extracellular matrix degradation by suppressing the NF-kB and MAPK pathways in nucleus pulposus cells. Inflammation 40(3):725–734. https://doi.org/10.1007/s10753-017-0516-6

    Article  CAS  PubMed  Google Scholar 

  34. Yu XH, Zheng XL, Tang CK (2015) Nuclear factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis. Adv Clin Chem 70:1–30. https://doi.org/10.1016/bs.acc.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  35. Ting AT, Bertrand MJM (2016) More to life than NF-κB in TNFR1 signaling. Trends Immunol 37(8):535–545. https://doi.org/10.1016/j.it.2016.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vo NV, Hartman RA, Yurube T, Jacobs LJ, Sowa GA, Kang JD (2013) Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. Spine J 13(3):331–341. https://doi.org/10.1016/j.spinee.2012.02.027

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu H, Pan H, Yang H, Wang J, Zhang K, Li X, Wang H, Ding W, Li B, Zheng Z (2015) LIM mineralization protein-1 suppresses TNF-α induced intervertebral disc degeneration by maintaining nucleus pulposus extracellular matrix production and inhibiting matrix metalloproteinases expression. J Orthop Res 33(3):294–303

    Article  CAS  Google Scholar 

  38. Shoji S, Yumiko A-A, Koichi M, Yoshiharu K, Kunihiro A (2009) Effect of small interference RNA (siRNA) for ADAMTS5 on intervertebral disc degeneration in the rabbit anular needle-puncture model. Arthritis Res Ther 11(6):R166. https://doi.org/10.1186/ar2851

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Lv or Yanbin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, F., Yang, L., Wang, J. et al. Inhibition of TNFR1 Attenuates LPS Induced Apoptosis and Inflammation in Human Nucleus Pulposus Cells by Regulating the NF-KB and MAPK Signalling Pathway. Neurochem Res 46, 1390–1399 (2021). https://doi.org/10.1007/s11064-021-03278-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03278-1

Keywords

Navigation