Skip to main content

Advertisement

Log in

Ketone Metabolite β-Hydroxybutyrate Ameliorates Inflammation After Spinal Cord Injury by Inhibiting the NLRP3 Inflammasome

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ketogenic diet (KD) has been shown to be beneficial in a range of neurological disorders, with ketone metabolite β-hydroxybutyrate (βOHB) reported to block the nucleotide oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in bone marrow-derived macrophages. In this study, we show that pretreatment with KD or in situ βOHB suppressed macrophages/microglia activation and the overproduction of inflammatory cytokines, while KD downregulated the expression of NLRP3 inflammasome. Moreover, KD promoted macrophages/microglia transformation from the M1 phenotype to the M2a phenotype following spinal cord injury (SCI) in the in vivo study. Rats in the KD group demonstrated improved behavioral and electrophysiological recovery after SCI when compared to those rats in the standard diet group. The in vitro study performed on BV2 cells indicated that βOHB inhibited an LPS+ATP-induced inflammatory response and decreased NLRP3 protein levels. Our data demonstrated that pretreatment with KD attenuated neuroinflammation following SCI, probably by inhibiting NLRP3 inflammasome and shifting the activation state of macrophages/microglia from the M1 to the M2a phenotype. Therefore, the ketone metabolite βOHB might provide a potential future therapeutic strategy for SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

βOHB:

β-hydroxybutyrate

Arg 1:

Arginase 1

ASC:

apoptosis-associated speck-like protein containing a caspase-1 recruitment domain

EC:

Eriochrome cyanine

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

iNOS:

inducible nitric oxide synthase

IL-1β:

Interleukin 1β

KD:

Ketogenic diet

LPS:

Lipopolysaccharide

NLRP3:

Nucleotide oligomerization domain-like receptor family, pyrin domain containing 3

PBS:

phosphate-buffered saline

SCI:

Spinal cord injury

SD:

Standard diet

SSEPs:

Somatosensory-evoked potentials

TcMEPs:

Transcranial motor-evoked potentials

TNF-α:

Tumor necrosis factor alpha

References

  1. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG (2014) Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol 6:309–331. https://doi.org/10.2147/clep.s68889

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siddall PJ, Middleton JW (2015) Spinal cord injury-induced pain: mechanisms and treatments. Pain Manag 5(6):493–507. https://doi.org/10.2217/pmt.15.47

    Article  PubMed  Google Scholar 

  3. Witiw CD, Fehlings MG (2015) Acute spinal cord injury. J Spinal Disord Tech 28(6):202–210. https://doi.org/10.1097/bsd.0000000000000287

    Article  PubMed  Google Scholar 

  4. Wang X, Jiao X, Liu Z, Li Y (2017) Crocetin potentiates neurite growth in hippocampal neurons and facilitates functional recovery in rats with spinal cord injury. Neurosci Bull 33(6):695–702. https://doi.org/10.1007/s12264-017-0157-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qu WS, Tian DS, Guo ZB, Fang J, Zhang Q, Yu ZY, Xie MJ, Zhang HQ, Lu JG, Wang W (2012) Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. J Neuroinflammation 9:178. https://doi.org/10.1186/1742-2094-9-178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399. https://doi.org/10.1038/nrn3053

    Article  CAS  PubMed  Google Scholar 

  7. Lago N, Pannunzio B, Amo-Aparicio J, Lopez-Vales R, Peluffo H (2018) CD200 modulates spinal cord injury neuroinflammation and outcome through CD200R1. Brain Behav Immun 73:416–426. https://doi.org/10.1016/j.bbi.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  8. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444. https://doi.org/10.1523/JNEUROSCI.3257-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gensel JC, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 1619:1–11. https://doi.org/10.1016/j.brainres.2014.12.045

    Article  CAS  PubMed  Google Scholar 

  10. Dai X, Mao C, Lan X, Chen H, Li M, Bai J, Deng J, Liang Q, Zhang J, Zhong X, Liang Y, Fan J, Luo H, He Z (2017) Acute Penicillium marneffei infection stimulates host M1/M2a macrophages polarization in BALB/C mice. BMC Microbiol 17(1):177. https://doi.org/10.1186/s12866-017-1086-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walker DG, Lue LF (2015) Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther 7(1):56. https://doi.org/10.1186/s13195-015-0139-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832. https://doi.org/10.1016/j.cell.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  13. Zendedel A, Johann S, Mehrabi S, Joghataei MT, Hassanzadeh G, Kipp M, Beyer C (2016) Activation and regulation of NLRP3 inflammasome by intrathecal application of SDF-1a in a spinal cord injury model. Mol Neurobiol 53(5):3063–3075. https://doi.org/10.1007/s12035-015-9203-5

    Article  CAS  PubMed  Google Scholar 

  14. Song H, Liu B, Huai W, Yu Z, Wang W, Zhao J, Han L, Jiang G, Zhang L, Gao C, Zhao W (2016) The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat Commun 7:13727. https://doi.org/10.1038/ncomms13727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chi W, Chen H, Li F, Zhu Y, Yin W, Zhuo Y (2015) HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-kappaB pathway in acute glaucoma. J Neuroinflammation 12:137. https://doi.org/10.1186/s12974-015-0360-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E (2015) The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol 10:395–424. https://doi.org/10.1146/annurev-pathol-012414-040431

    Article  CAS  PubMed  Google Scholar 

  17. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481(7381):278–286. https://doi.org/10.1038/nature10759

    Article  CAS  PubMed  Google Scholar 

  18. Guo H, Callaway JB, Ting JP (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21(7):677–687. https://doi.org/10.1038/nm.3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi AJ, Ryter SW (2014) Inflammasomes: molecular regulation and implications for metabolic and cognitive diseases. Mol Cells 37(6):441–448. https://doi.org/10.14348/molcells.2014.0104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang Y, Jing X, Zeng Z, Bi W, Chen Y, Wu X, Yang L, Liu J, Xiao S, Liu S, Lin D, Tao E (2015) Rifampicin attenuates rotenone-induced inflammation via suppressing NLRP3 inflammasome activation in microglia. Brain Res 1622:43–50. https://doi.org/10.1016/j.brainres.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  21. de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW (2008) A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci 28(13):3404–3414. https://doi.org/10.1523/jneurosci.0157-08.2008

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liang F, Li C, Gao C, Li Z, Yang J, Liu X, Wang Y (2015) Effects of hyperbaric oxygen therapy on NACHT domain-leucine-rich-repeat- and pyrin domain-containing protein 3 inflammasome expression in rats following spinal cord injury. Mol Med Rep 11(6):4650–4656. https://doi.org/10.3892/mmr.2015.3314

    Article  PubMed  Google Scholar 

  23. Jiang W, Li M, He F, Zhou S, Zhu L (2017) Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation 14(1):207. https://doi.org/10.1186/s12974-017-0980-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Streijger F, Plunet WT, Lee JH, Liu J, Lam CK, Park S, Hilton BJ, Fransen BL, Matheson KA, Assinck P, Kwon BK, Tetzlaff W (2013) Ketogenic diet improves forelimb motor function after spinal cord injury in rodents. PLoS One 8(11):e78765. https://doi.org/10.1371/journal.pone.0078765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maalouf M, Rho JM, Mattson MP (2009) The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 59(2):293–315. https://doi.org/10.1016/j.brainresrev.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  26. Martin-McGill KJ, Jackson CF, Bresnahan R, Levy RG, Cooper PN (2018) Ketogenic diets for drug-resistant epilepsy. Cochrane Database Syst Rev 11(11):Cd001903. https://doi.org/10.1002/14651858.CD001903.pub4

    Article  PubMed  Google Scholar 

  27. Prins ML, Fujima LS, Hovda DA (2005) Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. J Neurosci Res 82(3):413–420. https://doi.org/10.1002/jnr.20633

    Article  CAS  PubMed  Google Scholar 

  28. Fu SP, Wang JF, Xue WJ, Liu HM, Liu BR, Zeng YL, Li SN, Huang BX, Lv QK, Wang W, Liu JX (2015) Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson’s disease models are mediated by GPR109A-dependent mechanisms. J Neuroinflammation 12:9. https://doi.org/10.1186/s12974-014-0230-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lim S, Chesser AS, Grima JC, Rappold PM, Blum D, Przedborski S, Tieu K (2011) D-beta-hydroxybutyrate is protective in mouse models of Huntington’s disease. PLoS One 6(9):e24620. https://doi.org/10.1371/journal.pone.0024620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van der Auwera I, Wera S, Van Leuven F, Henderson ST (2005) A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr Metab 2:28. https://doi.org/10.1186/1743-7075-2-28

    Article  CAS  Google Scholar 

  31. Xie G, Tian W, Wei T, Liu F (2015) The neuroprotective effects of beta-hydroxybutyrate on Abeta-injected rat hippocampus in vivo and in Abeta-treated PC-12 cells in vitro. Free Radic Res 49(2):139–150. https://doi.org/10.3109/10715762.2014.987274

    Article  CAS  PubMed  Google Scholar 

  32. Stafstrom CE, Rho JM (2012) The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 3:59. https://doi.org/10.3389/fphar.2012.00059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeong MA, Plunet W, Streijger F, Lee JH, Plemel JR, Park S, Lam CK, Liu J, Tetzlaff W (2011) Intermittent fasting improves functional recovery after rat thoracic contusion spinal cord injury. J Neurotrauma 28(3):479–492. https://doi.org/10.1089/neu.2010.1609

    Article  PubMed  PubMed Central  Google Scholar 

  34. Plunet WT, Lam CK, Lee JH, Liu J, Tetzlaff W (2010) Prophylactic dietary restriction may promote functional recovery and increase lifespan after spinal cord injury. Ann N Y Acad Sci 1198(Suppl 1):E1–E11. https://doi.org/10.1111/j.1749-6632.2010.05564.x

    Article  PubMed  Google Scholar 

  35. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV Jr, de Cabo R, Ulrich S, Akassoglou K, Verdin E (2013) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339(6116):211–214. https://doi.org/10.1126/science.1227166

    Article  CAS  PubMed  Google Scholar 

  36. Newman JC, Verdin E (2014) Ketone bodies as signaling metabolites. Trends Endocrinol Metab 25(1):42–52. https://doi.org/10.1016/j.tem.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  37. Newman JC, Verdin E (2014) beta-hydroxybutyrate: much more than a metabolite. Diabetes Res Clin Pract 106(2):173–181. https://doi.org/10.1016/j.diabres.2014.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang X, Wu X, Liu Q, Kong G, Zhou J, Jiang J, Wu X, Huang Z, Su W, Zhu Q (2017) Ketogenic metabolism inhibits histone deacetylase (HDAC) and reduces oxidative stress after spinal cord injury in rats. Neuroscience 366:36–43. https://doi.org/10.1016/j.neuroscience.2017.09.056

    Article  CAS  PubMed  Google Scholar 

  39. Kong G, Huang Z, Ji W, Wang X, Liu J, Wu X, Huang Z, Li R, Zhu Q (2017) The ketone metabolite beta-hydroxybutyrate attenuates oxidative stress in spinal cord injury by suppression of class I histone deacetylases. J Neurotrauma 34(18):2645–2655. https://doi.org/10.1089/neu.2017.5192

    Article  PubMed  Google Scholar 

  40. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD, Kang S, Horvath TL, Fahmy TM, Crawford PA, Biragyn A, Alnemri E, Dixit VD (2015) The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21(3):263–269. https://doi.org/10.1038/nm.3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ding J, Xu X, Wu X, Huang Z, Kong G, Liu J, Huang Z, Liu Q, Li R, Yang Z, Liu Y, Zhu Q (2019) Bone loss and biomechanical reduction of appendicular and axial bones under ketogenic diet in rats. Exp Ther Med. https://doi.org/10.3892/etm.2019.7241

  42. Huang Z, Li R, Liu J, Huang Z, Hu Y, Wu X, Zhu Q (2018) Longitudinal electrophysiological changes after cervical hemi-contusion spinal cord injury in rats. Neurosci Lett 664:116–122. https://doi.org/10.1016/j.neulet.2017.11.019

    Article  CAS  PubMed  Google Scholar 

  43. Lee JH, Streijger F, Tigchelaar S, Maloon M, Liu J, Tetzlaff W, Kwon BK (2012) A contusive model of unilateral cervical spinal cord injury using the infinite horizon impactor. J Vis Exp 65. https://doi.org/10.3791/3313

  44. Lu Y, Yang YY, Zhou MW, Liu N, Xing HY, Liu XX, Li F (2018) Ketogenic diet attenuates oxidative stress and inflammation after spinal cord injury by activating Nrf2 and suppressing the NF-kappaB signaling pathways. Neurosci Lett 683:13–18. https://doi.org/10.1016/j.neulet.2018.06.016

    Article  CAS  PubMed  Google Scholar 

  45. Vaysse L, Conchou F, Demain B, Davoust C, Plas B, Ruggieri C, Benkaddour M, Simonetta-Moreau M, Loubinoux I (2015) Strength and fine dexterity recovery profiles after a primary motor cortex insult and effect of a neuronal cell graft. Behav Neurosci 129(4):423–434. https://doi.org/10.1037/bne0000067

    Article  PubMed  Google Scholar 

  46. Proietto LR, Whitley RD, Brooks DE, Schultz GE, Gibson DJ, Berkowski WM Jr, Salute ME, Plummer CE (2017) Development and assessment of a novel canine ex vivo corneal model. Curr Eye Res 42(6):813–821. https://doi.org/10.1080/02713683.2016.1262428

    Article  CAS  PubMed  Google Scholar 

  47. Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209(2):378–388. https://doi.org/10.1016/j.expneurol.2007.06.009

    Article  CAS  PubMed  Google Scholar 

  48. Goldberg EL, Asher JL, Molony RD, Shaw AC, Zeiss CJ, Wang C, Morozova-Roche LA, Herzog RI, Iwasaki A, Dixit VD (2017) beta-hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep 18(9):2077–2087. https://doi.org/10.1016/j.celrep.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Truflandier K, Beaumont E, Charbonney E, Maghni K, De Marchie M, Spahija J (2018) Mechanical ventilation modulates the pro-inflammatory cytokine expression in spinal cord tissue after injury in rats. Neurosci Lett. https://doi.org/10.1016/j.neulet.2018.01.028

  50. Papa S, Caron I, Erba E, Panini N, De Paola M, Mariani A, Colombo C, Ferrari R, Pozzer D, Zanier ER, Pischiutta F, Lucchetti J, Bassi A, Valentini G, Simonutti G, Rossi F, Moscatelli D, Forloni G, Veglianese P (2016) Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. Biomaterials 75:13–24. https://doi.org/10.1016/j.biomaterials.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  51. Zhou X, He X, Ren Y (2014) Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regen Res 9(20):1787–1795. https://doi.org/10.4103/1673-5374.143423

    Article  PubMed  PubMed Central  Google Scholar 

  52. Anwar MA, Al Shehabi TS, Eid AH (2016) Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci 10:98. https://doi.org/10.3389/fncel.2016.00098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu Y, Zhang R, Yan K, Chen F, Huang W, Lv B, Sun C, Xu L, Li F, Jiang X (2014) Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J Neuroinflammation 11:135. https://doi.org/10.1186/1742-2094-11-135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240. https://doi.org/10.1146/annurev.neuro.22.1.219

    Article  CAS  PubMed  Google Scholar 

  55. Konsman JP, Drukarch B, Van Dam AM (2007) (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci (Lond) 112(1):1–25. https://doi.org/10.1042/cs20060043

    Article  CAS  Google Scholar 

  56. Huang C, Wang P, Xu X, Zhang Y, Gong Y, Hu W, Gao M, Wu Y, Ling Y, Zhao X, Qin Y, Yang R, Zhang W (2018) The ketone body metabolite beta-hydroxybutyrate induces an antidepression-associated ramification of microglia via HDACs inhibition-triggered Akt-small RhoGTPase activation. Glia 66(2):256–278. https://doi.org/10.1002/glia.23241

    Article  PubMed  Google Scholar 

  57. Qian J, Zhu W, Lu M, Ni B, Yang J (2017) D-beta-hydroxybutyrate promotes functional recovery and relieves pain hypersensitivity in mice with spinal cord injury. Br J Pharmacol 174(13):1961–1971. https://doi.org/10.1111/bph.13788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nandivada P, Fell GL, Pan AH, Nose V, Ling PR, Bistrian BR, Puder M (2016) Eucaloric ketogenic diet reduces hypoglycemia and inflammation in mice with endotoxemia. Lipids 51(6):703–714. https://doi.org/10.1007/s11745-016-4156-7

    Article  CAS  PubMed  Google Scholar 

  59. Ruskin DN, Kawamura M, Masino SA (2009) Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet. PLoS One 4(12):e8349. https://doi.org/10.1371/journal.pone.0008349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamanashi T, Iwata M, Kamiya N, Tsunetomi K, Kajitani N, Wada N, Iitsuka T, Yamauchi T, Miura A, Pu S, Shirayama Y, Watanabe K, Duman RS, Kaneko K (2017) Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses. Sci Rep 7(1):7677. https://doi.org/10.1038/s41598-017-08055-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ghosh M, Xu Y, Pearse DD (2016) Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. J Neuroinflammation 13:9. https://doi.org/10.1186/s12974-015-0463-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fenn AM, Hall JC, Gensel JC, Popovich PG, Godbout JP (2014) IL-4 signaling drives a unique arginase+/IL-1beta+ microglia phenotype and recruits macrophages to the inflammatory CNS: consequences of age-related deficits in IL-4Ralpha after traumatic spinal cord injury. J Neurosci 34(26):8904–8917. https://doi.org/10.1523/JNEUROSCI.1146-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khayrullina G, Bermudez S, Byrnes KR (2015) Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury. J Neuroinflammation 12:172. https://doi.org/10.1186/s12974-015-0391-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin ZH, Wang SY, Chen LL, Zhuang JY, Ke QF, Xiao DR, Lin WP (2017) Methylene blue mitigates acute neuroinflammation after spinal cord injury through inhibiting NLRP3 inflammasome activation in microglia. J Neuroinflammation 11:391. https://doi.org/10.1186/s12974-017-0980-9

    Article  CAS  Google Scholar 

  65. Yamanashi T, Iwata M (2017) Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses. Sci Rep 7(1):7677. https://doi.org/10.1038/s41598-017-08055-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Plunet WT, Streijger F, Lam CK, Lee JH, Liu J, Tetzlaff W (2008) Dietary restriction started after spinal cord injury improves functional recovery. Exp Neurol 213(1):28–35. https://doi.org/10.1016/j.expneurol.2008.04.011

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (81472084 and 81601904), the China Postdoctoral Science Foundation (2018M643328) and the Natural Science Foundation of Guangdong Province (2016A030313553).

Author information

Authors and Affiliations

Authors

Contributions

Ganggang Kong, Junhao Liu, Rong Li, Zucheng Huang, Zhou Yang, Junyu Lin, Xiuhua Wu and Zhiping Huang performed the experiments; Xiaoliang Wu and Qingan Zhu designed the study; and Ganggang Kong and Xiaoliang Wu wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Qingan Zhu or Xiaoliang Wu.

Ethics declarations

Conflict of interest

ll authors confirm that there are no conflicts of interest.

Ethics Approval

All procedures in this study were conducted in accordance with protocols approved by the Ethics Committee for Animal Experiments of Nanfang Hospital, Southern Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, G., Liu, J., Li, R. et al. Ketone Metabolite β-Hydroxybutyrate Ameliorates Inflammation After Spinal Cord Injury by Inhibiting the NLRP3 Inflammasome. Neurochem Res 46, 213–229 (2021). https://doi.org/10.1007/s11064-020-03156-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03156-2

Keywords

Navigation