Skip to main content

Advertisement

Log in

α-Synuclein Overexpression Induces Lysosomal Dysfunction and Autophagy Impairment in Human Neuroblastoma SH-SY5Y

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Although the etiology of Parkinson's disease (PD) is multifactorial, it has been linked to abnormal accumulation of α-synuclein (α-syn) in dopaminergic neurons, which could lead to dysfunctions on intracellular organelles, with potential neurodegeneration. Patients with familial early-onset PD frequently present mutation in the α-syn gene (SNCA), which encodes mutant α-syn forms, such as A30P and A53T, which potentially regulate Ca2+ unbalance. Here we investigated the effects of overexpression of wild-type α-syn (WT) and the mutant forms A30P and A53T, on modulation of lysosomal Ca2+ stores and further autophagy activation. We found that in α-syn-overexpressing cells, there was a decrease in Ca2+ released from endoplasmic reticulum (ER) which is related to the increase in lysosomal Ca2+ release, coupled to lysosomal pH alkalization. Interestingly, α-syn-overexpressing cells showed lower LAMP1 levels, and a disruption of lysosomal morphology and distribution, affecting autophagy. Interestingly, all these effects were more evident with A53T mutant isoform when compared to A30P and WT α-syn types, indicating that the pathogenic phenotype for PD is potentially related to impairment of α-syn degradation. Taken together, these events directly impact PD-related dysfunctions, being considered possible molecular targets for neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

α-syn:

α-synuclein

Baf A1:

Bafilomycin-A1

CICR:

Calcium-induced calcium release

ER:

Endoplasmic reticulum

GPN:

Glycyl-l-phenylalanine 2-naphthylamide

IP3R:

Inositol 1,4,5-trisphosphate receptor

LAMP1:

Lysosomal membrane-associated protein 1

MCSs:

Membrane contact sites

NAADP:

Nicotinic acid adenine dinucleotide phosphate

PD:

Parkinson’s disease

RyR:

Ryanodine receptor

SERCA:

Sarco/endoplasmic Ca2+-ATPase

SH-SY5Y:

Human neuroblastoma cell line

SNpc:

Substantia nigra pars compacta

STV:

Starvation

TPCs:

Two-pore channels

References

  1. Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29:1583–1590. https://doi.org/10.1002/mds.25945

    Article  PubMed  Google Scholar 

  2. Bernheimer H, Birkmayer W, Hornykiewicz O et al (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455. https://doi.org/10.1016/0022-510x(73)90175-5

    Article  CAS  PubMed  Google Scholar 

  3. Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601. https://doi.org/10.1002/mds.26424

    Article  PubMed  Google Scholar 

  4. Di Monte DA (2003) The environment and Parkinson’s disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol 2:531–538. https://doi.org/10.1016/s1474-4422(03)00501-5

    Article  PubMed  Google Scholar 

  5. Gasser T (2009) Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev Mol Med 11:e22. https://doi.org/10.1017/S1462399409001148

    Article  PubMed  Google Scholar 

  6. Uversky VN, Li J, Fink AL (2001) Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett 500:105–108. https://doi.org/10.1016/s0014-5793(01)02597-2

    Article  CAS  PubMed  Google Scholar 

  7. Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. https://doi.org/10.1016/s0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  8. Halliday GM, McCann H (2010) The progression of pathology in Parkinson’s disease. Ann N Y Acad Sci 1184:188–195. https://doi.org/10.1111/j.1749-6632.2009.05118.x

    Article  PubMed  Google Scholar 

  9. Krüger R, Kuhn W, Müller T et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108. https://doi.org/10.1038/ng0298-106

    Article  PubMed  Google Scholar 

  10. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  11. Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA (2006) Calcium in cell injury and death. Annu Rev Pathol 1:405–434. https://doi.org/10.1146/annurev.pathol.1.110304.100218

    Article  CAS  PubMed  Google Scholar 

  12. Erustes AG, Stefani FY, Terashima JY et al (2018) Overexpression of α-synuclein in an astrocyte cell line promotes autophagy inhibition and apoptosis. J Neurosci Res 96:160–171. https://doi.org/10.1002/jnr.24092

    Article  CAS  PubMed  Google Scholar 

  13. Fujikake N, Shin M, Shimizu S (2018) Association between autophagy and neurodegenerative diseases. Front Neurosci. https://doi.org/10.3389/fnins.2018.00255

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nicotera P, Orrenius S (1998) The role of calcium in apoptosis. Cell Calcium 23:173–180

    Article  CAS  PubMed  Google Scholar 

  15. Scannevin RH (2018) Therapeutic strategies for targeting neurodegenerative protein misfolding disorders. Curr Opin Chem Biol 44:66–74

    Article  CAS  PubMed  Google Scholar 

  16. Smaili S, Hirata H, Ureshino R et al (2009) Calcium and cell death signaling in neurodegeneration and aging. An Acad Bras Cienc 81:467–475

    Article  CAS  PubMed  Google Scholar 

  17. Gordon PB, Holen I, Fosse M et al (1993) Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem 268:26107–26112

    CAS  PubMed  Google Scholar 

  18. Levine TP, Patel S (2016) Signalling at membrane contact sites: two membranes come together to handle second messengers. Curr Opin Cell Biol 39:77–83. https://doi.org/10.1016/j.ceb.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  19. Prinz WA, Toulmay A, Balla T (2020) The functional universe of membrane contact sites. Nat Rev Mol Cell Biol 21:7–24

    Article  CAS  PubMed  Google Scholar 

  20. Galione A (2006) NAADP, a new intracellular messenger that mobilizes Ca2+ from acidic stores. Biochem Soc Trans 34:922–926. https://doi.org/10.1042/BST0340922

    Article  CAS  PubMed  Google Scholar 

  21. Patel S, Docampo R (2010) Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol 20:277–286. https://doi.org/10.1016/j.tcb.2010.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cuervo AM, Stafanis L, Fredenburg R et al (2004) Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305:1292–1295. https://doi.org/10.1126/science.1101738

    Article  CAS  PubMed  Google Scholar 

  23. Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z et al (2011) Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein. J Neurosci 31:14508–14520. https://doi.org/10.1523/JNEUROSCI.1560-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lawrence RE, Zoncu R (2019) The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol 21:133–142

    Article  CAS  PubMed  Google Scholar 

  25. Perera RM, Zoncu R (2016) The lysosome as a regulatory hub. Annu Rev Cell Dev Biol 32:223–253. https://doi.org/10.1146/annurev-cellbio-111315-125125

    Article  CAS  PubMed  Google Scholar 

  26. Shen HM, Mizushima N (2014) At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci 39:61–71

    Article  CAS  PubMed  Google Scholar 

  27. Brailoiu E, Hooper R, Cai X et al (2010) An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J Biol Chem 285:2897–2901. https://doi.org/10.1074/jbc.C109.081943

    Article  CAS  PubMed  Google Scholar 

  28. Brailoiu E, Churamani D, Cai X et al (2009) Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 186:201–209. https://doi.org/10.1083/jcb.200904073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calcraft PJ, Ruas M, Pan Z et al (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600. https://doi.org/10.1038/nature08030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pereira GJS, Tressoldi N, Hirata H et al (2013) Autophagy as a neuroprotective mechanism against 3-nitropropionic acid-induced murine astrocyte cell death. Neurochem Res 38:2418–2426. https://doi.org/10.1007/s11064-013-1154-5

    Article  CAS  PubMed  Google Scholar 

  31. Pereira GJS, Hirata H, Fimia GM et al (2011) Nicotinic acid adenine dinucleotide phosphate (NAADP) regulates autophagy in cultured astrocytes. J Biol Chem 286:27875–27881. https://doi.org/10.1074/jbc.C110.216580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Furukawa K, Matsuzaki-Kobayashi M, Hasegawa T et al (2006) Plasma membrane ion permeability induced by mutant α-synuclein contributes to the degeneration of neural cells. J Neurochem 97:1071–1077. https://doi.org/10.1111/j.1471-4159.2006.03803.x

    Article  CAS  PubMed  Google Scholar 

  33. Morgan AJ, Davis LC, Galione A (2015) Imaging approaches to measuring lysosomal calcium. Methods Cell Biol 126:159–195. https://doi.org/10.1016/bs.mcb.2014.10.031

    Article  CAS  PubMed  Google Scholar 

  34. Pereira GJS, Hirata H, do Carmo LG et al (2014) NAADP-sensitive two-pore channels are present and functional in gastric smooth muscle cells. Cell Calcium 56:51–58. https://doi.org/10.1016/j.ceca.2014.04.005

    Article  CAS  PubMed  Google Scholar 

  35. Jencks WP (1992) On the mechanism of ATP-driven Ca2+ transport by the calcium ATPase of sarcoplasmic reticulum. Ann N Y Acad Sci 671:47–49

    Article  Google Scholar 

  36. Telmer CA, Verma R, Teng H et al (2015) Rapid, specific, no-wash, far-red fluorogen activation in subcellular compartments by targeted fluorogen activating proteins. ACS Chem Biol 10:1239–1246. https://doi.org/10.1021/cb500957k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adler J, Parmryd I (2010) Quantifying colocalization by correlation: the pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry A 77:733–742. https://doi.org/10.1002/cyto.a.20896

    Article  PubMed  Google Scholar 

  38. Kilpatrick BS, Eden ER, Hockey LN et al (2015) Methods for monitoring lysosomal morphology. Methods Cell Biol 126:1–19. https://doi.org/10.1016/bs.mcb.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  39. Lin HJ, Herman P, Kang JS, Lakowicz JR (2001) Fluorescence lifetime characterization of novel low-pH probes. Anal Biochem 294:118–125. https://doi.org/10.1006/abio.2001.5155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arotcarena M-L, Teil M, Dehay B (2019) Autophagy in synucleinopathy: the overwhelmed and defective machinery. Cells 8:565. https://doi.org/10.3390/cells8060565

    Article  CAS  PubMed Central  Google Scholar 

  41. Mazzulli JR, Zunke F, Isacson O et al (2016) α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci USA 113:1931–1936. https://doi.org/10.1073/pnas.1520335113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ureshino E et al (2019) The interplay between Ca2+ signaling pathways and neurodegeneration. Int J Mol Sci 20:6004. https://doi.org/10.3390/ijms20236004

    Article  CAS  PubMed Central  Google Scholar 

  43. Lee HC (2003) Calcium signaling: NAADP ascends as a new messenger. Curr Biol 13:R186–R188. https://doi.org/10.1016/s0960-9822(03)00120-9

    Article  CAS  PubMed  Google Scholar 

  44. Berg TO, Strømhaug E, Løvdal T et al (1994) Use of glycyl-L-phenylalanine 2-naphthylamide, a lysosome-disrupting cathepsin C substrate, to distinguish between lysosomes and prelysosomal endocytic vacuoles. Biochem J 300:229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Betzer C, Jensen PH (2018) Reduced cytosolic calcium as an early decisive cellular state in Parkinson’s disease and synucleinopathies. Front Neurosci 12:819. https://doi.org/10.3389/fnins.2018.00819

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rivero-Ríos P, Gómez-Suaga P, Fdez E, Hilfiker S (2014) Upstream deregulation of calcium signaling in Parkinson’s disease. Front Mol Neurosci 7:53. https://doi.org/10.3389/fnmol.2014.00053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Volles MJ, Lansbury PT (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41:4595–4602

    Article  CAS  PubMed  Google Scholar 

  48. Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107:2587–2600. https://doi.org/10.1083/jcb.107.6.2587

    Article  CAS  PubMed  Google Scholar 

  49. Patel S, Brailoiu E (2012) Triggering of Ca2+ signals by NAADP-gated two-pore channels: a role for membrane contact sites? Biochem Soc Trans 40:153–157. https://doi.org/10.1042/BST20110693

    Article  CAS  PubMed  Google Scholar 

  50. Chu Y, Dodiya H, Aebischer P et al (2009) Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol Dis 35:385–398. https://doi.org/10.1016/j.nbd.2009.05.023

    Article  CAS  PubMed  Google Scholar 

  51. Dehay B, Bové J, Rodríguez-Muela N et al (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30:12535–12544. https://doi.org/10.1523/JNEUROSCI.1920-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565. https://doi.org/10.1038/nrm1150

    Article  CAS  PubMed  Google Scholar 

  53. Ishida Y, Nayak S, Mindell JA, Grabe M (2013) A model of lysosomal pH regulation. J Gen Physiol 141:705–720. https://doi.org/10.1085/jgp.201210930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao J, Benlekbir S, Rubinstein JL (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521:241–245. https://doi.org/10.1038/nature14365

    Article  CAS  PubMed  Google Scholar 

  55. Fukuda T, Ewan L, Bauer M et al (2006) Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease. Ann Neurol 59:700–708. https://doi.org/10.1002/ana.20807

    Article  CAS  PubMed  Google Scholar 

  56. Henry AG, Aghamohammadzadeh S, Samaroo H et al (2015) Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Hum Mol Genet 24:6013–6028. https://doi.org/10.1093/hmg/ddv314

    Article  CAS  PubMed  Google Scholar 

  57. Dehay B, Martinez-Vicente M, Ramirez A et al (2012) Lysosomal dysfunction in Parkinson disease. Autophagy 8:1389–1391. https://doi.org/10.4161/auto.21011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Coffey EE, Beckel JM, Laties AM, Mitchell CH (2014) Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 263:111–124. https://doi.org/10.1016/j.neuroscience.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  59. Golabek AA, Kida E, Walus M et al (2000) CLN3 protein regulates lysosomal pH and alters intracellular processing of Alzheimer’s amyloid-beta protein precursor and cathepsin D in human cells. Mol Genet Metab 70:203–213. https://doi.org/10.1006/mgme.2000.3006

    Article  CAS  PubMed  Google Scholar 

  60. Lee JH, Yu WH, Kumar A et al (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146–1158. https://doi.org/10.1016/j.cell.2010.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kinouchi K, Ichihara A, Itoh H (2011) Functional characterization of (pro)renin receptor in association with V-ATPase. Front Biosci 16:3216–3223

    Article  CAS  Google Scholar 

  62. Stefanis L, Larsen KE, Rideout HJ et al (2001) Expression of A53T mutant but not wild-type α-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549–9560. https://doi.org/10.1523/JNEUROSCI.21-24-09549.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ravikumar B, Vacher C, Berger Z et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595. https://doi.org/10.1038/ng1362

    Article  CAS  PubMed  Google Scholar 

  64. Schaeffer V, Lavenir I, Ozcelik S et al (2012) Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 135:2169–2177. https://doi.org/10.1093/brain/aws143

    Article  PubMed  PubMed Central  Google Scholar 

  65. Webb JL, Ravikumar B, Atkins J et al (2003) Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013. https://doi.org/10.1074/jbc.M300227200

    Article  CAS  PubMed  Google Scholar 

  66. Mustaly-Kalimi S, Littlefield AM, Stutzmann GE (2018) Calcium signaling deficits in glia and autophagic pathways contributing to neurodegenerative disease. Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.7266

    Article  PubMed  Google Scholar 

  67. Lei Z, Cao G, Wei G (2019) A30P mutant α-synuclein impairs autophagic flux by inactivating JNK signaling to enhance ZKSCAN3 activity in midbrain dopaminergic neurons. Cell Death Dis 10:1–14. https://doi.org/10.1038/s41419-019-1364-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marina Yukari Kubota, Cícero Ramos dos Santos, Maria de Lourdes Santos, Elizabeth Kanashiro for technical assistance, and Grant Churchill for providing NAADP-AM.

Funding

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP: 2013/20073-2; 2019/02821-8 (SSS); 2017/10863-7 (GJSP); 2016/20796-2 (RPU). Conselho Nacional de Desenvolvimento Científico e Tecnológico: Universal 421603/2018-6 (GJSP); PVE 401236/2014-5 (SSS); PVE 401141/2014-4 (CB). The Master Fellowship (ACN) was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES). Confocal microscope Zeiss LSM 780, facility from the Instituto de Farmacologia e Biologia Molecular (INFAR) was supported by Financiadora de Estudos e Projetos (FINEP) and FAPESP.

Author information

Authors and Affiliations

Authors

Contributions

All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: GJSP, SSS. Acquisition of data: ACN, AGE. Analysis and interpretation of data: ACN, AGE, GJSP, PR, CB. Drafting of the manuscript: ACN, AGE, PR, CB, RPU. Critical revision of the manuscript for important intellectual content: GJSP, SSS. Statistical analysis: ACN. Study supervision: GJSP, SSS.

Corresponding authors

Correspondence to Gustavo J. S. Pereira or Soraya S. Smaili.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, A.C., Erustes, A.G., Reckziegel, P. et al. α-Synuclein Overexpression Induces Lysosomal Dysfunction and Autophagy Impairment in Human Neuroblastoma SH-SY5Y. Neurochem Res 45, 2749–2761 (2020). https://doi.org/10.1007/s11064-020-03126-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03126-8

Keywords

Navigation