Skip to main content

Advertisement

Log in

Pristine C60 Fullerene Nanoparticles Ameliorate Hyperglycemia-Induced Disturbances via Modulation of Apoptosis and Autophagy Flux

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a prevalent metabolic disorder associated with multiple complications including neuropathy, memory loss and cognitive decline. Despite a long history of studies on diabetic complications, there are no effective therapeutic strategies for neuroprotection in diabetes. Hyperglycemia-induced imbalance in programmed cell death could initiate a decline in neural tissue cells viability. Various nanomaterials can induce either cell death or cell survival dependent on the type and surface features. Pristine C60 fullerene is a nontoxic nanomaterial, which exhibits antioxidant and cytoprotective properties. However, the precise molecular mechanism with which the C60 nanoparticle exerts cytoprotective effect in diabetic subjects has not yet been fully addressed. Thus, this study aimed to determine whether C60 fullerene prevents oxidative stress impairment and to explore the effects of C60 fullerene on apoptosis and autophagy in diabetes mellitus to clarify its potential mechanisms. These effects have been examined for olive oil extracted C60 fullerene on the hippocampus of STZ diabetic rats. Up-regulation of Caspase-3, Beclin-1 and oxidative stress indexes and down-regulation of Bcl-2 were observed in the brain of STZ-diabetic rats. The exposure to C60 fullerene for a period of 12 weeks ameliorate redox imbalance, hyperglycemia-induced disturbances in apoptosis and autophagy flux via modulation of Caspase-3, Bcl-2, Beclin-1 and LC3I/II contents. Furthermore, C60 fullerene ameliorated the LC3I/II ratio and prevented extremely increased autophagy flux. Contrarily, pristine C60 fullerene had no modulatory effect on all studied apoptotic and autophagy markers in non-diabetic groups. Therefore, oil extracted C60 fullerene exhibits cytoprotective effect in hyperglycemia-stressed hippocampal cells. The presented results confirm that pristine C60 fullerene nanoparticles can protect hippocampal cells against hyperglycemic stress via anti-oxidant, anti-apoptotic effects and amelioration of autophagy flux. Moreover, C60 fullerene regulates a balance of autophagy via BCL-2/Beclin-1 reciprocal expression that could prevent functional disturbances in hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rababa'h AM, Mardini AN, Alzoubi KH, Ababneh MA, Athamneh RY (2019) The effect of cilostazol on hippocampal memory and oxidative stress biomarkers in rat model of diabetes mellitus. Brain Res 1715:182–187

    CAS  PubMed  Google Scholar 

  2. Ye S, Chen M, Jiang Y, Chen M, Zhou T, Wang Y, Hou Z, Ren L (2014) Polyhydroxylated fullerene attenuates oxidative stress-induced apoptosis via a fortifying Nrf2-regulated cellular antioxidant defence system. Int J Nanomedicine 9:2073–2087

    PubMed  PubMed Central  Google Scholar 

  3. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal cell death. Physiol Rev 98(2):813–880

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Farbood Y, Ghaderi S, Rashno M, Khoshnam SE, Khorsandi L, Sarkaki A, Rashno M (2019) Sesamin: a promising protective agent against diabetes-associated cognitive decline in rats. Life Sci 230:169–177

    CAS  PubMed  Google Scholar 

  5. Lee SC, Pervaiz S (2007) Apoptosis in the pathophysiology of diabetes mellitus. Int J Biochem Cell Biol 39:497–504

    CAS  PubMed  Google Scholar 

  6. Soleymaninejad M, Joursaraei SG, Feizi F, Jafari Anarkooli I (2017) The effects of lycopene and insulin on histological changes and the expression level of Bcl-2 family genes in the hippocampus of streptozotocin-induced diabetic rats. J Diabetes Res 2017:4650939

    PubMed  PubMed Central  Google Scholar 

  7. Naudi A, Jove M, Ayala V, Cassanye A, Serrano J, Gonzalo H, Boada J, Prat J, Portero-Otin M, Pamplona R (2012) Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res 2012:696215

    PubMed  PubMed Central  Google Scholar 

  8. Staricha K, Meyers N, Garvin J, Liu Q, Rarick K, Harder D, Cohen S (2020) Effect of high glucose condition on glucose metabolism in primary astrocytes. Brain Res 1732:146702

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bahniwal M, Little JP, Klegeris A (2017) High glucose enhances neurotoxicity and inflammatory cytokine secretion by stimulated human astrocytes. Curr Alzheimer Res 14(7):731–741

    CAS  PubMed  Google Scholar 

  10. Takahashi S, Izawa Y, Suzuki N (2012) Astroglial pentose phosphate pathway rates in response to high-glucose environments. ASN Neuro 4(2):e00078

    PubMed  PubMed Central  Google Scholar 

  11. Zhou W, Yao Y, Li J, Wu D, Zhao M, Yan Z, Pang A, Kong L (2019) TIGAR attenuates high glucose-induced neuronal apoptosis via an autophagy pathway. Front Mol Neurosci 12:193

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Agca CA, Tuzcu M, Hayirli A, Sahin K (2014) Taurine ameliorates neuropathy via regulating NF-κB and Nrf2/HO-1 signaling cascades in diabetic rats. Food Chem Toxicol 71:116–121

    CAS  PubMed  Google Scholar 

  13. Schiavone S, Jaquet V, Trabace L, Krause KH (2013) Severe life stress and oxidative stress in the brain: from animal models to human pathology. Antioxid Redox Signal 18(12):1475–1490

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Muriach M, Flores-Bellver M, Romero FJ, Barcia JM (2014) Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev 2014:102158

    PubMed  PubMed Central  Google Scholar 

  15. Li W, Roy Choudhury G, Winters A, Prah J, Lin W, Liu R, Yang SH (2018) Hyperglycemia alters astrocyte metabolism and inhibits astrocyte proliferation. Aging Dis 9(4):674–684

    PubMed  PubMed Central  Google Scholar 

  16. Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9(2):119

    PubMed  PubMed Central  Google Scholar 

  17. Vincent AM, McLean LL, Backus C, Feldman EL (2005) Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 19(6):638–640

    CAS  PubMed  Google Scholar 

  18. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29(5):347–364. https://doi.org/10.1038/s41422-019-0164-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. El-Khattouti A, Selimovic D, Haikel Y, Hassan M (2013) Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death 6:37–55

    PubMed  PubMed Central  Google Scholar 

  20. Huang CY, Kuo WW, Wang HF, Lin CJ, Lin YM, Chen JL, Kuo CH, Chen PK, Lin JY (2014) GABA tea ameliorates cerebral cortex apoptosis and autophagy in streptozotocin-induced diabetic rats. Journal of Functional Foods 6:534–544

    Google Scholar 

  21. Sowers JR, Zhang Y (2018) Autophagy and cardiometabolic diseases: from molecular mechanisms to translational medicine (Zhang, Y. Section II). Academic Press, New York, pp 83–90

    Google Scholar 

  22. Asadi F, Jamshidi AH, Khodagholi F, Yans A, Azimi L, Faizi M, Vali L, Abdollahi M, Ghahremani MH, Sharifzadeh M (2015) Reversal effects of crocin on amyloid β-induced memory deficit: modification of autophagy or apoptosis markers. Pharmacol Biochem Behav 139(Pt A):47–58

    CAS  PubMed  Google Scholar 

  23. Gonzalez CD, Lee MS, Marchetti P, Pietropaolo M, Towns R, Vaccaro MI, Watada H, Wiley JW (2011) The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy 7(1):2–11

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang F, Xu C, Reece EA, Li X, Wu Y, Harman C, Yu J, Dong D, Wang C, Yang P, Zhong J, Yang P (2017) Protein kinase C-alpha suppresses autophagy and induces neural tube defects via miR-129-2 in diabetic pregnancy. Nat Commun 8:15182

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Butler D, Bahr BA (2006) Oxidative stress and lysosomes: CNS-related consequences and implications for lysosomal enhancement strategies and induction of autophagy. Antioxid Redox Signal 8(1–2):185–196

    CAS  PubMed  Google Scholar 

  26. Tezil T, Basaga H (2014) Modulation of cell death in age-related diseases. Curr Pharm Des 20(18):3052–3067

    CAS  PubMed  Google Scholar 

  27. Infante-Garcia C, Garcia-Alloza M (2019) Review of the effect of natural compounds and extracts on neurodegeneration in animal models of diabetes mellitus. Int J Mol Sci 20(10):E2533

    PubMed  Google Scholar 

  28. Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R (2015) Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 14(1):45–57

    CAS  PubMed  Google Scholar 

  29. Rambold AS, Lippincott-Schwartz J (2011) Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle 10(23):4032–4038

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cordani M, Somoza Á (2019) Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment. Cell Mol Life Sci 76(7):1215–1242

    CAS  PubMed  Google Scholar 

  31. Nedzvetsky V, Andrievsky G, Chachibaia T, Tykhomyrov A (2012) Differences in antioxidant/protective efficacy of hydrated C60 fullerene nanostructures in liver and brain of rats with streptozotocin-induced diabetes. Diabetes Metabol. https://doi.org/10.4172/2155-6156.1000215

    Article  Google Scholar 

  32. Rondags A, Yuen WY, Jonkman MF, Horváth B (2017) Fullerene C60 with cytoprotective and cytotoxic potential: prospects as a novel treatment agent in dermatology? Exp Dermatol 26(3):220–224

    PubMed  Google Scholar 

  33. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5(12):2578–2585

    CAS  PubMed  Google Scholar 

  34. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomed 2(4):639–649

    CAS  Google Scholar 

  35. Tykhomyrov AA, Nedzvetsky VS, Klochkov VK, Andrievsky GV (2008) Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals. Toxicology 246(2–3):158–165

    CAS  PubMed  Google Scholar 

  36. Etem EO, Bal R, Akağaç AE, Kuloglu T, Tuzcu M, Andrievsky GV, Buran I, Nedzvetsky VS, Baydas G (2014) The effects of hydrated C(60) fullerene on gene expression profile of TRPM2 and TRPM7 in hyperhomocysteinemic mice. J Recept Signal Transduct Res 34(4):317–324

    CAS  PubMed  Google Scholar 

  37. Nedzvetsky VS, Sukharenko EV, Baydas G, Andrievsky GV (2019) Water-soluble C60 fullerene ameliorates astroglial reactivity and TNFa production in retina of diabetic rats. Regul Mech Biosyst 10(4):513–519

    Google Scholar 

  38. Bal R, Türk G, Tuzcu M, Yilmaz O, Ozercan I, Kuloglu T, Gür S, Nedzvetsky VS, Tykhomyrov AA, Andrievsky GV, Baydas G, Naziroglu M (2011) Protective effects of nanostructures of hydrated C(60) fullerene on reproductive function in streptozotocin-diabetic male rats. Toxicology 282(3):69–81

    CAS  PubMed  Google Scholar 

  39. Ogunyinka BI, Oyinloye BE, Osunsanmi FO, Opoku AR, Kappo AP (2016) Modulatory influence of Parkia biglobosa protein isolate on testosterone and biomarkers of oxidative stress in brain and testes of streptozotocin-induced diabetic male rats. Int J Physiol Pathophysiol Pharmacol 8(3):78–86

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tabatabaei SRF, Ghaderi S, Bahrami-Tapehebur M, Farbood Y, Rashno M (2017) Aloe vera gel improves behavioral deficits and oxidative status in streptozotocin-induced diabetic rats. Biomed Pharmacother 96:279–290

    CAS  PubMed  Google Scholar 

  41. Baati T, Bourasset F, Gharbi N, Njim L, Abderrabba M, Kerkeni A, Szwarc H, Moussa F (2012) The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials 33(19):4936–4946

    CAS  PubMed  Google Scholar 

  42. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    CAS  PubMed  Google Scholar 

  43. Nedzvetskii VS, Berezich VA, Oberniak TI, Zhmareva EN (1986) Characteristics of specific intermediate filament proteins in human brain tumors. Biokhimiia 51(11):1843–1850

    CAS  PubMed  Google Scholar 

  44. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  45. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    CAS  PubMed  Google Scholar 

  46. Duncan DB (1957) Multiple range test for correlated and heteroscedastic means. Biometrics 13:164–176

    Google Scholar 

  47. Johnston HJ, Hutchison GR, Christensen FM, Aschberger K, Stone V (2010) The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci 114(2):162–182

    CAS  PubMed  Google Scholar 

  48. Prischepa IV, Prokushenkova OG, Nedzvetsky VS (2015) Nanoparticles C60 fullerene prevent reactive gliosis in retina of aged rats under hyperglycemia. Regul Mech Biosyst 6(2):113–118

    Google Scholar 

  49. Nedzvetskii VS, Pryshchepa IV, Tykhomyrov AA, Baydas G (2016) Inhibition of reactive gliosis in the retina of rats with streptozotocin-induced diabetes under the action of hydrated C60 fullerene. Neurophysiology 48(2):130–140

    CAS  Google Scholar 

  50. Caletti G, Herrmann AP, Pulcinelli RR, Steffens L, Morás AM, Vianna P, Chies JAB, Moura DJ, Barros HMT, Gomez R (2018) Taurine counteracts the neurotoxic effects of streptozotocin-induced diabetes in rats. Amino Acids 50(1):95–104

    CAS  PubMed  Google Scholar 

  51. Liu X, Mo Y, Gong J, Li Z, Peng H, Chen J, Wang Q, Ke Z, Xie J (2016) Puerarin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Metab Brain Dis 31(2):417–423

    CAS  PubMed  Google Scholar 

  52. Rebai R, Jasmin L, Boudah A (2017) The antidepressant effect of melatonin and fluoxetine in diabetic rats is associated with a reduction of the oxidative stress in the prefrontal and hippocampal cortices. Brain Res Bull 134:142–150

    CAS  PubMed  Google Scholar 

  53. Lutchmansingh FK, Hsu JW, Bennett FI, Badaloo AV, McFarlane-Anderson N, Gordon-Strachan GM, Wright-Pascoe RA, Jahoor F, Boyne MS (2018) Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia. PLoS ONE 13(6):e0198626

    PubMed  PubMed Central  Google Scholar 

  54. Elshater AA, Haridy MAM, Salman MMA, Fayyad AS, Hammad S (2018) Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomed Pharmacother 97:53–59

    CAS  PubMed  Google Scholar 

  55. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939

    CAS  PubMed  Google Scholar 

  56. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou KL, Zhou YF, Wu K, Tian NF, Wu YS, Wang YL, Chen DH, Zhou B, Wang XY, Xu HZ, Zhang XL (2015) Stimulation of autophagy promotes functional recovery in diabetic rats with spinal cord injury. Sci Rep 5:17130

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Maurya SK, Tewari M, Sharma B, Shukla HS (2013) Expression of procaspase 3 and activated caspase 3 and its relevance in hormone-responsive gallbladder carcinoma chemotherapy. Korean J Intern Med 28(5):573–578

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rice KM, Manne ND, Gadde MK, Paturi S, Arvapalli R, Blough E (2015) Differential regulation of apoptosis in slow and fast twitch muscles of aged female F344BN rats. Age (Dordr) 37(2):30

    Google Scholar 

  60. Ummanni R, Lehnigk U, Zimmermann U, Woenckhaus C, Walther R, Giebel J (2010) Immunohistochemical expression of caspase-1 and -9, uncleaved caspase-3 and -6, cleaved caspase-3 and -6 as well as Bcl-2 in benign epithelium and cancer of the prostate. Exp Ther Med 1(1):47–52

    PubMed  PubMed Central  Google Scholar 

  61. Hu Z, Guan W, Wang W, Huang L, Xing H, Zhu Z (2007) Protective effect of a novel cystine C(60) derivative on hydrogen peroxide-induced apoptosis in rat pheochromocytoma PC12 cells. Chem Biol Interact 167(2):135–144

    CAS  PubMed  Google Scholar 

  62. Markovic Z, Trajkovic V (2008) Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29(26):3561–3573

    CAS  PubMed  Google Scholar 

  63. Althunibat OY, Al Hroob AM, Abukhalil MH, Germoush MO, Bin-Jumah M, Mahmoud AM (2019) Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sci 221:83–92

    CAS  PubMed  Google Scholar 

  64. Zhao CH, Liu HQ, Cao R, Ji AL, Zhang L, Wang F, Yang RH (2012) Effects of dietary fish oil on learning function and apoptosis of hippocampal pyramidal neurons in streptozotocin-diabetic rats. Brain Res 1457:33–43

    CAS  PubMed  Google Scholar 

  65. Wang J, Wang L, Zhou J, Qin A, Chen Z (2018) The protective effect of formononetin on cognitive impairment in streptozotocin (STZ)-induced diabetic mice. Biomed Pharmacother 106:1250–1257

    CAS  PubMed  Google Scholar 

  66. Hsieh CF, Liu CK, Lee CT, Yu LE, Wang JY (2019) Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep 9(1):840

    PubMed  PubMed Central  Google Scholar 

  67. Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cohignac V, Landry MJ, Boczkowski J, Lanone S (2014) Autophagy as a possible underlying mechanism of nanomaterial toxicity. Nanomaterials (Basel) 4(3):548–582

    Google Scholar 

  69. Schuhmann MK, Fluri F (2017) Effects of fullerenols on mouse brain microvascular endothelial cells. Int J Mol Sci 18(8). pii: E1783

  70. Yamawaki H, Iwai N (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 290(6):C1495–C1502

    CAS  PubMed  Google Scholar 

  71. Johnson-Lyles DN, Peifley K, Lockett S, Neun BW, Hansen M, Clogston J, Stern ST, McNeil SE (2010) Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol 248(3):249–258

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15(8):1318–1329

    CAS  PubMed  Google Scholar 

  73. Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170(1):75–86

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tian S, Lin J, Jun Zhou J, Wang X, Li Y, Ren X, Yu W, Zhong W, Xiao J, Sheng F, Chen Y, Jin C, Li S, Zheng Z, Xia B (2010) Beclin 1-independent autophagy induced by a Bcl-XL/Bcl-2 targeting compound, Z18. Autophagy 6(8):1032–1041

    CAS  PubMed  Google Scholar 

  75. Gui YX, Fan XN, Wang HM, Wang G, Chen SD (2012) Glyphosate induced cell death through apoptotic and autophagic mechanisms. Neurotoxicol Teratol 34(3):344–349

    CAS  PubMed  Google Scholar 

  76. Seillier M, Peuget S, Gayet O, Gauthier C, N'Guessan P, Monte M, Carrier A, Iovanna JL, Dusetti NJ (2012) TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ 19(9):1525–1535

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Li P, Du Q, Cao Z, Guo Z, Evankovich J, Yan W, Chang Y, Shao L, Stolz DB, Tsung A, Geller DA (2012) Interferon-γ induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1). Cancer Lett 314(2):213–222

    CAS  PubMed  Google Scholar 

  78. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G (2007) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26(10):2527–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S, Hirsch JA, Stein R, Pinkas-Kramarski R (2007) Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 3(6):561–568

    CAS  PubMed  Google Scholar 

  80. Wei Y, Sinha S, Levine B (2008) Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4(7):949–951

    CAS  PubMed  Google Scholar 

  81. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27(50):6407–6418

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Decuypere JP, Parys JB, Bultynck G (2012) Regulation of the autophagic bcl-2/beclin 1 interaction. Cells 1(3):284–312

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8(7):688–699

    CAS  PubMed  Google Scholar 

  84. Wolff DJ, Barbieri CM, Richardson CF, Schuster DI, Wilson SR (2002) Trisamine C(60)-fullerene adducts inhibit neuronal nitric oxide synthase by acting as highly potent calmodulin antagonists. Arch Biochem Biophys 399(2):130–141

    CAS  PubMed  Google Scholar 

  85. Martinez ZS, Castro E, Seong CS, Cerón MR, Echegoyen L, Llano M (2016) Fullerene derivatives strongly inhibit HIV-1 replication by affecting virus maturation without impairing protease activity. Antimicrob Agents Chemother 60(10):5731–5741

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Vance SJ, Desai V, Smith BO, Kennedy MW, Cooper A (2016) Aqueous solubilization of C60 fullerene by natural protein surfactants, latherin and ranaspumin-2. Biophys Chem 214–215:27–32

    PubMed  PubMed Central  Google Scholar 

  87. Ren SY (1852) Xu X (2015) Role of autophagy in metabolic syndrome-associated heart disease. Biochim Biophys Acta 2:225–231. https://doi.org/10.1016/j.bbadis.2014.04.029

    Article  CAS  Google Scholar 

  88. Yamada E, Singh R (2012) Mapping autophagy on to your metabolic radar. Diabetes 61(2):272–280

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Demir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, E., Nedzvetsky, V.S., Ağca, C.A. et al. Pristine C60 Fullerene Nanoparticles Ameliorate Hyperglycemia-Induced Disturbances via Modulation of Apoptosis and Autophagy Flux. Neurochem Res 45, 2385–2397 (2020). https://doi.org/10.1007/s11064-020-03097-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03097-w

Keywords

Navigation