Skip to main content

Advertisement

Log in

Synergic Effects of Berberine and Curcumin on Improving Cognitive Function in an Alzheimer’s Disease Mouse Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases, and no effective therapies have been found to prevent or cure AD to date. Berberine and curcumin are extracts from traditional Chinese herbs that have a long history of clinical benefits for AD. Here, using a transgenic AD mouse model, we found that the combined berberine and curcumin treatment had a much better effect on improving the cognitive function of mice than the single-drug treatment, suggesting synergic effects of the combined berberine and curcumin treatment. In addition, we found that the combined berberine and curcumin treatment had significant synergic effects on reducing soluble amyloid-β-peptide(1–42) production. Furthermore, the combination treatment also had remarkable synergic effects on decreasing inflammatory responses and oxidative stress in both the cortex and hippocampus of AD mice. We also found that the combination treatment performed much better than the single drugs in reducing the APP and BACE1 levels and increasing AMPKα phosphorylation and cell autophagy, which might be the underlying mechanism of the synergic effects. Taken together, the result of this study reveal the synergic effects and potential underlying mechanisms of the combined berberine and curcumin treatment in improving the symptoms of AD in mice. This study sheds light on a new strategy for exploring new phytotherapies for AD and also emphasizes that more research should focus on the synergic effects of herbal drugs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang L, Fang Y, Xu Y, Lian Y, Xie N, Wu T, Zhang H, Sun L, Zhang R, Wang Z (2015) Curcumin improves amyloid beta-peptide (1–42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS ONE 10:e0131525

    PubMed  PubMed Central  Google Scholar 

  2. Carreiras MC, Mendes E, Perry MJ, Francisco AP, Marco-Contelles J (2013) The multifactorial nature of Alzheimer's disease for developing potential therapeutics. Curr Top Med Chem 13:1745–1770

    CAS  PubMed  Google Scholar 

  3. Riemer J, Kins S (2013) Axonal transport and mitochondrial dysfunction in Alzheimer's disease. Neurodegener Dis 12:111–124

    CAS  PubMed  Google Scholar 

  4. Rampa A, Gobbi S, Belluti F, Bisi A (2013) Emerging targets in neurodegeneration: new opportunities for Alzheimer's disease treatment? Curr Top Med Chem 13:1879–1904

    CAS  PubMed  Google Scholar 

  5. Dias C, Barbosa RM, Laranjinha J, Ledo A (2014) Evaluation of mitochondrial function in the CNS of rodent models of Alzheimer’s disease—high resolution respirometry applied to acute hippocampal slices. Free Radic Biol Med 75(Suppl 1):S37

    PubMed  Google Scholar 

  6. Howes MJ, Perry E (2011) The role of phytochemicals in the treatment and prevention of dementia. Drugs Aging 28:439–468

    CAS  PubMed  Google Scholar 

  7. Sreenivasmurthy SG, Liu JY, Song JX, Yang CB, Malampati S, Wang ZY, Huang YY, Li M (2017) Neurogenic traditional chinese medicine as a promising strategy for the treatment of Alzheimer’s disease. Int J Mol Sci 18:272

    PubMed Central  Google Scholar 

  8. Sun ZK, Yang HQ, Chen SD (2013) Traditional Chinese medicine: a promising candidate for the treatment of Alzheimer’s disease. Transl Neurodegener 2:6

    PubMed  PubMed Central  Google Scholar 

  9. Gao J, Inagaki Y, Li X, Kokudo N, Tang W (2013) Research progress on natural products from traditional Chinese medicine in treatment of Alzheimer’s disease. Drug Discov Ther 7:46–57

    CAS  PubMed  Google Scholar 

  10. Cai Z, Wang C, Yang W (2016) Role of berberine in Alzheimer’s disease. Neuropsychiatr Dis Treat 12:2509–2520

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang P, Su C, Li R, Wang H, Ren Y, Sun H, Yang J, Sun J, Shi J, Tian J, Jiang S (2014) Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice. J Neurosci Res 92:218–231

    CAS  PubMed  Google Scholar 

  12. Kamath S, Skeels M, Pai A (2009) Significant differences in alkaloid content of Coptis chinensis (Huanglian), from its related American species. Chin Med 4:17

    PubMed  PubMed Central  Google Scholar 

  13. Darvesh AS, Carroll RT, Bishayee A, Novotny NA, Geldenhuys WJ, Van der Schyf CJ (2012) Curcumin and neurodegenerative diseases: a perspective. Expert Opin Investig Drugs 21:1123–1140

    CAS  PubMed  Google Scholar 

  14. Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12:332–347

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Durairajan SS, Liu LF, Lu JH, Chen LL, Yuan Q, Chung SK, Huang L, Li XS, Huang JD, Li M (2012) Berberine ameliorates beta-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model. Neurobiol Aging 33:2903–2919

    CAS  PubMed  Google Scholar 

  16. Huang M, Jiang X, Liang Y, Liu Q, Chen S, Guo Y (2017) Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of beta-amyloid in APP/tau/PS1 mouse model of Alzheimer's disease. Exp Gerontol 91:25–33

    CAS  PubMed  Google Scholar 

  17. Peng WH, Lo KL, Lee YH, Hung TH, Lin YC (2007) Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice. Life Sci 81:933–938

    CAS  PubMed  Google Scholar 

  18. Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10:355–362

    CAS  PubMed  Google Scholar 

  19. Chen C, Zhou Z, Zhong M, Zhang Y, Li M, Zhang L, Qu M, Yang J, Wang Y, Yu Z (2012) Thyroid hormone promotes neuronal differentiation of embryonic neural stem cells by inhibiting STAT3 signaling through TRalpha1. Stem Cells Dev 21:2667–2681

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen C, Ma Q, Chen X, Zhong M, Deng P, Zhu G, Zhang Y, Zhang L, Yang Z, Zhang K, Guo L, Wang L, Yu Z, Zhou Z (2015) Thyroid hormone-otx2 signaling is required for embryonic ventral midbrain neural stem cells differentiated into dopamine neurons. Stem Cells Dev 24:1751–1765

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiu SS, Lui E, Majeed M, Vishwanatha JK, Ranjan AP, Maitra A, Pramanik D, Smith JA, Helson L (2011) Differential distribution of intravenous curcumin formulations in the rat brain. Anticancer Res 31:907–911

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Suresh D, Srinivasan K (2010) Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J Med Res 131:682–691

    CAS  PubMed  Google Scholar 

  23. Wang X, Wang R, Xing D, Su H, Ma C, Ding Y, Du L (2005) Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract. Life Sci 77:3058–3067

    CAS  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  25. Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ (2014) Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 5:88

    PubMed  PubMed Central  Google Scholar 

  26. Ding Y, Qiao A, Wang Z, Goodwin JS, Lee ES, Block ML, Allsbrook M, McDonald MP, Fan GH (2008) Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model. J Neurosci 28:11622–11634

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Reiserer RS, Harrison FE, Syverud DC, McDonald MP (2007) Impaired spatial learning in the APPSwe + PSEN1DeltaE9 bigenic mouse model of Alzheimer's disease. Genes Brain Behav 6:54–65

    CAS  PubMed  Google Scholar 

  28. Jin Y, Khadka DB, Cho WJ (2016) Pharmacological effects of berberine and its derivatives: a patent update. Expert Opin Ther Pat 26:229–243

    CAS  PubMed  Google Scholar 

  29. Caliceti C, Franco P, Spinozzi S, Roda A, Cicero AF (2016) Berberine: new insights from pharmacological aspects to clinical evidences in the management of metabolic disorders. Curr Med Chem 23:1460–1476

    CAS  PubMed  Google Scholar 

  30. Huang M, Chen S, Liang Y, Guo Y (2016) The role of berberine in the multi-target treatment of senile dementia. Curr Top Med Chem 16:867–873

    CAS  PubMed  Google Scholar 

  31. Tan Y, Tang Q, Hu BR, Xiang JZ (2007) Antioxidant properties of berberine on cultured rabbit corpus cavernosum smooth muscle cells injured by hydrogen peroxide. Acta Pharmacol Sin 28:1914–1918

    CAS  PubMed  Google Scholar 

  32. Patil S, Tawari S, Mundhada D, Nadeem S (2015) Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats. Pharmacol Biochem Behav 136:13–20

    CAS  PubMed  Google Scholar 

  33. Haghani M, Shabani M, Tondar M (2015) The therapeutic potential of berberine against the altered intrinsic properties of the CA1 neurons induced by Abeta neurotoxicity. Eur J Pharmacol 758:82–88

    CAS  PubMed  Google Scholar 

  34. Lakey-Beitia J, Gonzalez Y, Doens D, Stephens DE, Santamaria R, Murillo E, Gutierrez M, Fernandez PL, Rao KS, Larionov OV, Durant-Archibold AA (2017) Assessment of novel curcumin derivatives as potent inhibitors of inflammation and amyloid-beta aggregation in Alzheimer’s disease. J Alzheimers Dis 60:S59–S68

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kotani R, Urano Y, Sugimoto H, Noguchi N (2017) Decrease of amyloid-beta levels by curcumin derivative via modulation of amyloid-beta protein precursor trafficking. J Alzheimers Dis 56:529–542

    CAS  PubMed  Google Scholar 

  36. Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Kandimalla R, Kuruva CS (2016) Protective effects of a natural product, curcumin, against amyloid beta induced mitochondrial and synaptic toxicities in Alzheimer's disease. J Investig Med 64:1220–1234

    PubMed  PubMed Central  Google Scholar 

  37. Jaroonwitchawan T, Chaicharoenaudomrung N, Namkaew J, Noisa P (2017) Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy. Neurosci Lett 636:40–47

    CAS  PubMed  Google Scholar 

  38. McClure R, Ong H, Janve V, Barton S, Zhu M, Li B, Dawes M, Jerome WG, Anderson A, Massion P, Gore JC, Pham W (2017) Aerosol delivery of curcumin reduced amyloid-beta deposition and improved Cognitive performance in a transgenic model of Alzheimer’s disease. J Alzheimers Dis 55:797–811

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh N, Sharma B (2018) Toxicological effects of berberine and sanguinarine. Front Mol Biosci 5:21

    PubMed  PubMed Central  Google Scholar 

  40. Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124

    CAS  PubMed  Google Scholar 

  41. Ahmed T, Gilani AU, Abdollahi M, Daglia M, Nabavi SF, Nabavi SM (2015) Berberine and neurodegeneration: a review of literature. Pharmacol Rep 67:970–979

    CAS  PubMed  Google Scholar 

  42. Luque-Contreras D, Carvajal K, Toral-Rios D, Franco-Bocanegra D, Campos-Pena V (2014) Oxidative stress and metabolic syndrome: cause or consequence of Alzheimer's disease? Oxid Med Cell Longev 2014:497802

    PubMed  PubMed Central  Google Scholar 

  43. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    CAS  PubMed  Google Scholar 

  44. Acosta C, Anderson HD, Anderson CM (2017) Astrocyte dysfunction in Alzheimer disease. J Neurosci Res 95:2430–2447

    CAS  PubMed  Google Scholar 

  45. Alam Q, Alam MZ, Mushtaq G, Damanhouri GA, Rasool M, Kamal MA, Haque A (2016) Inflammatory process in Alzheimer's and Parkinson’s diseases: central role of cytokines. Curr Pharm Des 22:541–548

    CAS  PubMed  Google Scholar 

  46. Djajadikerta A, Keshri S, Pavel M, Prestil R, Ryan L, Rubinsztein DC (2019) Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J Mol Biol https://doi.org/10.1016/j.jmb.2019.12.035

    Article  PubMed  Google Scholar 

  47. Gonzalez AE, Munoz VC, Cavieres VA, Bustamante HA, Cornejo VH, Januario YC, Gonzalez I, Hetz C, daSilva LL, Rojas-Fernandez A, Hay RT, Mardones GA, Burgos PV (2017) Autophagosomes cooperate in the degradation of intracellular C-terminal fragments of the amyloid precursor protein via the MVB/lysosomal pathway. FASEB J 31:2446–2459

    CAS  PubMed  Google Scholar 

  48. Du X, Huo X, Yang Y, Hu Z, Botchway BOA, Jiang Y, Fang M (2017) miR-124 downregulates BACE 1 and alters autophagy in APP/PS1 transgenic mice. Toxicol Lett 280:195–205

    CAS  PubMed  Google Scholar 

  49. Zhuang L, Peng F, Huang Y, Li W, Huang J, Chu Y, Ren P, Sun Y, Zhang Y, Xue E, Guo X, Shen X, Xue L (2019) CHIP modulates APP-induced autophagy-dependent pathological symptoms in Drosophila. Aging Cell 28:e13070

    Google Scholar 

  50. Schmukler E, Pinkas-Kramarski R (2019) Autophagy induction in the treatment of Alzheimer's disease. Drug Dev Res https://doi.org/10.1002/ddr.21605

    Article  PubMed  Google Scholar 

  51. Mohammadinejad R, Ahmadi Z, Tavakol S, Ashrafizadeh M (2019) Berberine as a potential autophagy modulator. J Cell Physiol 234:14914–14926

    CAS  Google Scholar 

  52. Shakeri A, Cicero AFG, Panahi Y, Mohajeri M, Sahebkar A (2019) Curcumin: a naturally occurring autophagy modulator. J Cell Physiol 234:5643–5654

    CAS  PubMed  Google Scholar 

  53. Li Y, Chen Y (2019) AMPK and autophagy. Adv Exp Med Biol 1206:85–108

    PubMed  Google Scholar 

  54. Chen H, Ji Y, Yan X, Su G, Chen L, Xiao J (2018) Berberine attenuates apoptosis in rat retinal Muller cells stimulated with high glucose via enhancing autophagy and the AMPK/mTOR signaling. Biomed Pharmacother 108:1201–1207

    CAS  PubMed  Google Scholar 

  55. Huang Z, Han Z, Ye B, Dai Z, Shan P, Lu Z, Dai K, Wang C, Huang W (2015) Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. Eur J Pharmacol 762:1–10

    CAS  PubMed  Google Scholar 

  56. Yao Q, Ke ZQ, Guo S, Yang XS, Zhang FX, Liu XF, Chen X, Chen HG, Ke HY, Liu C (2018) Curcumin protects against diabetic cardiomyopathy by promoting autophagy and alleviating apoptosis. J Mol Cell Cardiol 124:26–34

    CAS  PubMed  Google Scholar 

  57. Yi LT, Dong SQ, Wang SS, Chen M, Li CF, Geng D, Zhu JX, Liu Q, Cheng J (2019) Curcumin attenuates cognitive impairment by enhancing autophagy in chemotherapy. Neurobiol Dis 136:104715

    PubMed  Google Scholar 

  58. Zhang E, Cui W, Lopresti M, Mashek MG, Najt CP, Hu H, Mashek DG (2020) Hepatic PLIN5 signals via SIRT1 to promote autophagy and prevent inflammation during fasting. J Lipid Res. https://doi.org/10.1194/jlr.RA119000336

    Article  PubMed  PubMed Central  Google Scholar 

  59. Guo D, Shen Y, Li W, Li Q, Miao Y, Zhong Y (2020) Upregulation of flavin-containing monooxygenase 3 mimics calorie restriction to retard liver aging by inducing autophagy. Aging 12:931–944

    PubMed  PubMed Central  Google Scholar 

  60. Li Y, Zhou D, Ren Y, Zhang Z, Guo X, Ma M, Xue Z, Lv J, Liu H, Xi Q, Jia L, Zhang L, Liu Y, Zhang Q, Yan J, Da Y, Gao F, Yue J, Yao Z, Zhang R (2019) Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1. Autophagy 15:478–492

    CAS  PubMed  Google Scholar 

  61. Chen X, Wang H, Zhou M, Li X, Fang Z, Gao H, Li Y, Hu W (2018) Valproic acid attenuates traumatic brain injury-induced inflammation in vivo: involvement of autophagy and the Nrf2/ARE signaling pathway. Front Mol Neurosci 11:117

    PubMed  PubMed Central  Google Scholar 

  62. HemaIswarya S, Doble M (2006) Potential synergism of natural products in the treatment of cancer. Phytother Res 20:239–249

    CAS  PubMed  Google Scholar 

  63. Einbond LS, Wu HA, Kashiwazaki R, He K, Roller M, Su T, Wang X, Goldsberry S (2012) Carnosic acid inhibits the growth of ER-negative human breast cancer cells and synergizes with curcumin. Fitoterapia 83:1160–1168

    CAS  PubMed  Google Scholar 

  64. Ettefagh KA, Burns JT, Junio HA, Kaatz GW, Cech NB (2011) Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition. Planta Med 77:835–840

    CAS  PubMed  Google Scholar 

  65. Song Y, Zhao F, Zhang L, Du Y, Wang T, Fu F (2013) Ginsenoside Rg1 exerts synergistic anti-inflammatory effects with low doses of glucocorticoids in vitro. Fitoterapia 91:173–179

    CAS  PubMed  Google Scholar 

  66. Li DD, Xu Y, Zhang DZ, Quan H, Mylonakis E, Hu DD, Li MB, Zhao LX, Zhu LH, Wang Y, Jiang YY (2013) Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob Agents Chemother 57:6016–6027

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pandey A, Vishnoi K, Mahata S, Tripathi SC, Misra SP, Misra V, Mehrotra R, Dwivedi M, Bharti AC (2015) Berberine and curcumin target survivin and STAT3 in gastric cancer cells and synergize actions of standard chemotherapeutic 5-fluorouracil. Nutr Cancer 67:1293–1304

    PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the soft science of the Sichuan Provincial Science and Technology Department (No. 18Z081), Sichuan Traditional Chinese Medicine Administration (No. 2018KF016), and Sichuan Health Services Subsidy Project 2017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-hai Chen or Maoquan Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11064_2020_2992_MOESM1_ESM.tif

Supplementary file1 Figure S1. Berberine and curcumin combination treatment does not cause significant injury in the liver (A) or kidneys (B) as detected by hematoxylin and eosin (H&E) staining. Scale bar: 40μm. (TIF 5357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Li, C., Zhang, D. et al. Synergic Effects of Berberine and Curcumin on Improving Cognitive Function in an Alzheimer’s Disease Mouse Model. Neurochem Res 45, 1130–1141 (2020). https://doi.org/10.1007/s11064-020-02992-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02992-6

Keywords

Navigation