Skip to main content

Advertisement

Log in

Resveratrol Downregulates STAT3 Expression and Astrocyte Activation in Primary Astrocyte Cultures of Rat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes respond to all forms of central nervous system (CNS) insults by a process referred to as reactive astrogliosis. Inhibition of astrocyte growth and activation is an important strategy for promoting injured CNS repair. STAT3 (signal transducer and activator of transcription 3) is reported to be a critical regulator of astrogliosis, and resveratrol (RES, a dietary polyphenol) is considered to be a natural inhibitor of STAT3 expression and phosphorylation. In this study, we investigated the effects of RES on STAT3 expression and phosphorylation, and then on the proliferation and activation of astrocytes, a critical process in reactive astrogliosis, in rat primary cultured astrocytes and an in vitro scratch-wound model. RES downregulated the expression levels of STAT3, P-STAT3 and GFAP (glial fibrillary acidic protein) in cultured astrocytes. The positive index of Ki67 was apparently reduced in cultured astrocytes after RES treatment. Meanwhile, cultured astrocyte proliferation and activation were attenuated by RES. Moreover, in the established in vitro scratch-wound model the increased expression levels of STAT3, P-STAT3 and GFAP induced by scratching injury were also clearly inhibited by RES. In addition, the inhibitory effect of RES on cell proliferation was similar to that of AG490 (a selective inhibitor of STAT3 phosphorylation) and abrogated by Colivelin (a STAT3 activator) stimuli. Taken together, our data suggest that RES is able to inhibit reactive astrocyte proliferation and activation mainly via deactivating STAT3 pathway. So RES may have a therapeutic benefit for the treatment of the injured CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647. https://doi.org/10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Su Z, Yuan Y, Cao L, Zhu Y, Gao L, Qiu Y et al (2010) Triptolide promotes spinal cord repair by inhibiting astrogliosis and inflammation. Glia 58:901–915. https://doi.org/10.1002/glia.20972

    Article  PubMed  Google Scholar 

  3. Pekny M, Wilhelmsson U, Tatlisumak T, Pekna M (2019) Astrocyte activation and reactive gliosis-a new target in stroke? Neurosci Lett 689:45–55. https://doi.org/10.1016/j.neulet.2018.07.021

    Article  CAS  PubMed  Google Scholar 

  4. Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38. https://doi.org/10.1016/j.neulet.2013.12.071

    Article  CAS  PubMed  Google Scholar 

  5. Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10:235–241. https://doi.org/10.1038/nrn2591

    Article  CAS  PubMed  Google Scholar 

  6. Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I et al (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483. https://doi.org/10.1126/science.278.5337.477

    Article  CAS  PubMed  Google Scholar 

  7. He F, Ge W, Martinowich K, Becker-Catania S, Coskun V, Zhu W et al (2005) A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci 8:616–625. https://doi.org/10.1038/nn1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28:7231–7243. https://doi.org/10.1523/jneurosci.1709-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shiratori-Hayashi M, Koga K, Tozaki-Saitoh H, Kohro Y, Toyonaga H, Yamaguchi C et al (2015) STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch. Nat Med 21:927–931. https://doi.org/10.1038/nm.3912

    Article  CAS  PubMed  Google Scholar 

  10. Zhou HJ, Yang X, Cui HJ, Tang T, Zhong JH, Luo JK et al (2017) Leukemia inhibitory factor contributes to reactive astrogliosis via activation of signal transducer and activator of transcription 3 signaling after intracerebral hemorrhage in rats. J Neurotrauma 34:1658–1665. https://doi.org/10.1089/neu.2016.4711

    Article  PubMed  Google Scholar 

  11. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M et al (2018) Resveratrol: a double-edged sword in health benefits. Biomedicines 6(3):91. https://doi.org/10.3390/biomedicines6030091

    Article  CAS  PubMed Central  Google Scholar 

  12. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2014) Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats. Toxicol In Vitro 28:479–484. https://doi.org/10.1016/j.tiv.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  13. Quincozes-Santos A, Gottfried C (2011) Resveratrol modulates astroglial functions: neuroprotective hypothesis. Ann N Y Acad Sci 1215:72–78. https://doi.org/10.1111/j.1749-6632.2010.05857.x

    Article  CAS  PubMed  Google Scholar 

  14. Wu ML, Li H, Yu LJ, Chen XY, Kong QY, Song X et al (2014) Short-term resveratrol exposure causes in vitro and in vivo growth inhibition and apoptosis of bladder cancer cells. PLoS ONE 9:e89806. https://doi.org/10.1371/journal.pone.0089806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu LJ, Wu ML, Li H, Chen XY, Wang Q, Sun Y et al (2008) Inhibition of STAT3 expression and signaling in resveratrol-differentiated medulloblastoma cells. Neoplasia 10:736–744. https://doi.org/10.1593/neo.08304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong LX, Li H, Wu ML, Liu XY, Zhong MJ, Chen XY et al (2015) Inhibition of STAT3 signaling as critical molecular event in resveratrol-suppressed ovarian cancer cells. J Ovarian Res 8:25. https://doi.org/10.1186/s13048-015-0152-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baek SH, Ko JH, Lee H, Jung J, Kong M, Lee JW et al (2016) Resveratrol inhibits STAT3 signaling pathway through the induction of SOCS-1: Role in apoptosis induction and radiosensitization in head and neck tumor cells. Phytomedicine 23:566–577. https://doi.org/10.1016/j.phymed.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  18. Habibie, Yokoyama S, Abdelhamed S, Awale S, Sakurai H, Hayakawa Y et al (2014) Survivin suppression through STAT3/beta-catenin is essential for resveratrol-induced melanoma apoptosis. Int J Oncol 45:895–901. https://doi.org/10.3892/ijo.2014.2480

    Article  CAS  PubMed  Google Scholar 

  19. Yang YP, Chang YL, Huang PI, Chiou GY, Tseng LM, Chiou SH et al (2012) Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis. J Cell Physiol 227:976–993. https://doi.org/10.1002/jcp.22806

    Article  CAS  PubMed  Google Scholar 

  20. Chiba T, Mack L, Delis N, Brill B, Groner B (2012) Stat3 inhibition in neural lineage cells. Horm Mol Biol Clin Investig 10:255–263. https://doi.org/10.1515/hmbci-2012-0005

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Tian Y, Lu N, Gin T, Cheng CH, Chan MT (2013) Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes. PLoS ONE 8:e75804. https://doi.org/10.1371/journal.pone.0075804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lui PP, Chan LS, Cheuk YC, Lee YW, Chan KM (2009) Expression of bone morphogenetic protein-2 in the chondrogenic and ossifying sites of calcific tendinopathy and traumatic tendon injury rat models. J Orthop Surg Res 4:27. https://doi.org/10.1186/1749-799x-4-27

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tfilin M, Sudai E, Merenlender A, Gispan I, Yadid G, Turgeman G (2010) Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry 15:1164–1175. https://doi.org/10.1038/mp.2009.110

    Article  CAS  PubMed  Google Scholar 

  24. Yu AC, Lee YL, Eng LF (1993) Astrogliosis in culture: I. The model and the effect of antisense oligonucleotides on glial fibrillary acidic protein synthesis. J Neurosci Res 34:295–303. https://doi.org/10.1002/jnr.490340306

    Article  CAS  PubMed  Google Scholar 

  25. Seo E, Kang H, Lim OK, Jun HS (2018) Supplementation with IL-6 and muscle cell culture conditioned media enhances myogenic differentiation of adipose tissue-derived stem cells through STAT3 activation. Int J Mol Sci 19(6):1557. https://doi.org/10.3390/ijms19061557

    Article  CAS  PubMed Central  Google Scholar 

  26. Ben Haim L, Carrillo-de Sauvage MA, Ceyzeriat K, Escartin C (2015) Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 9:278. https://doi.org/10.3389/fncel.2015.00278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155. https://doi.org/10.1523/jneurosci.3547-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu R, Zhou J, Luo C, Lin J, Wang X, Li X et al (2010) Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury. J Neurosurg Spine 13:169–180. https://doi.org/10.3171/2010.3.spine09190

    Article  PubMed  Google Scholar 

  29. Ceyzeriat K, Abjean L, Carrillo-de Sauvage MA, Ben Haim L, Escartin C (2016) The complex STATes of astrocyte reactivity: how are they controlled by the JAK-STAT3 pathway? Neuroscience 330:205–218. https://doi.org/10.1016/j.neuroscience.2016.05.043

    Article  CAS  PubMed  Google Scholar 

  30. Fawcett JW, Verhaagen J (2018) Intrinsic determinants of axon regeneration. Dev Neurobiol 78:890–897. https://doi.org/10.1002/dneu.22637

    Article  PubMed  Google Scholar 

  31. Chen X, Chen C, Hao J, Zhang J, Zhang F (2018) Effect of CLIP3 upregulation on astrocyte proliferation and subsequent glial scar formation in the rat spinal cord via STAT3 pathway after injury. J Mol Neurosci 64:117–128. https://doi.org/10.1007/s12031-017-0998-6

    Article  CAS  PubMed  Google Scholar 

  32. Sarafian TA, Montes C, Imura T, Qi J, Coppola G, Geschwind DH et al (2010) Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro. PLoS ONE 5:e9532. https://doi.org/10.1371/journal.pone.0009532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7:494–506. https://doi.org/10.1016/j.nurt.2010.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Callaghan JP, Kelly KA, VanGilder RL, Sofroniew MV, Miller DB (2014) Early activation of STAT3 regulates reactive astrogliosis induced by diverse forms of neurotoxicity. PLoS ONE 9:e102003. https://doi.org/10.1371/journal.pone.0102003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506. https://doi.org/10.1038/nrd2060

    Article  CAS  PubMed  Google Scholar 

  36. Arus BA, Souza DG, Bellaver B, Souza DO, Goncalves CA, Quincozes-Santos A et al (2017) Resveratrol modulates GSH system in C6 astroglial cells through heme oxygenase 1 pathway. Mol Cell Biochem 428:67–77. https://doi.org/10.1007/s11010-016-2917-5

    Article  CAS  PubMed  Google Scholar 

  37. Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP et al (2017) The role of resveratrol in cancer therapy. Int J Mol Sci 18(12):2589. https://doi.org/10.3390/ijms18122589

    Article  CAS  PubMed Central  Google Scholar 

  38. Abdalla F, Nookala A, Padhye SB, Kumar A, Bhat HK (2017) 4-(E)-{{(p-tolylimino)-methylbenzene-1,2-diol}} (TIMBD) suppresses HIV1-gp120 mediated production of IL6 and IL8 but not CCL5. Sci Rep 7:8129. https://doi.org/10.1038/s41598-017-08332-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Liaoning Province of China (20180550064) and Liaoning Provincial Program for Top Discipline of Basic Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxin Cheng.

Ethics declarations

Conflict of interest

All the authors declared thay they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Wang, L., Li, F. et al. Resveratrol Downregulates STAT3 Expression and Astrocyte Activation in Primary Astrocyte Cultures of Rat. Neurochem Res 45, 455–464 (2020). https://doi.org/10.1007/s11064-019-02936-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02936-9

Keywords

Navigation