Skip to main content

Advertisement

Log in

Molecular Docking and Cognitive Impairment Attenuating Effect of Phenolic Compound Rich Fraction of Trianthema portulacastrum in Scopolamine Induced Alzheimer’s Disease Like Condition

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Dementia is considered as the frequent cause of neurodegenerative mental disorder such as Alzheimer’s disease (AD) amongst elderly people. Free radicals as well as cholinergic deficit neurons within nucleus basalis magnocellularis demonstrated to attribute with aggregation of β amyloid which further acts as an essential hallmark in AD. Various phenolic phytoconstituents exists in Trianthema portulastrum (TP) leaves have been reported as active against various neurological disorders. The current investigation was undertaken to evaluate the antiamnesic potential of butanol fraction of TP hydroethanolic extract (BFTP) by utilizing rodent models of elevated plus maze (EPM) and Hebbs William Maze (HWM) along with in vitro and in vivo antioxidant as well as acetylcholinesterase (AChE) inhibition studies. Molecular docking studies were also performed for evaluation of molecular interaction of existed phenolic compounds in BFTP. In vitro antioxidant study revealed concentration dependant strong ability of BFTP to inhibit free radicals. In vitro AChE inhibition study showed competitive type of inhibition kinetics. BFTP significantly reversed (p < 0.005 versus scopolamine) the damaging effect of scopolamine by reducing TL (Transfer Latency) and TRC (Time taken to recognize the reward chamber) in the EPM and HWM, respectively. BFTP also contributed towards increased (p < 0.005 versus scopolamine) enzymatic antioxidant as well as hippocampal acetylcholine (ACh) levels. Histological studies also supported the results as BFTP pretreated mice significantly reversed the scopolamine induced histological changes in hippocampal region. Docking studies confirmed chlorogenic acid has the most significant binding affinity towards AChE. This research finding concludes that BFTP could be a beneficial agent for management of cognition and behavioral disorders associated with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yadav E, Singh D, Yadav P, Verma A (2018) Comparative evaluation of Prosopis cineraria (L.) druce and its ZnO nanoparticles on scopolamine induced amnesia. Front Pharmacol 9:549. https://doi.org/10.3389/fphar.2018.00549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee J-S, Kim H-G, Lee H-W et al (2015) Hippocampal memory enhancing activity of pine needle extract against scopolamine-induced amnesia in a mouse model. Sci Rep 5:9651. https://doi.org/10.1038/srep09651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mufson EJ, Counts SE, Perez SE, Ginsberg SD (2008) Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 8:1703–1718. https://doi.org/10.1586/14737175.8.11.1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dharmarajan TS, Gunturu SG (2009) Alzheimer’s disease: a healthcare burden of epidemic proportion. Am Health Drug Benefits 2:39–47

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Martin JB (1999) Molecular basis of the neurodegenerative disorders. N Engl J Med 340:1970–1980. https://doi.org/10.1056/NEJM199906243402507

    Article  CAS  PubMed  Google Scholar 

  6. Lee B, Cao R, Choi Y-S et al (2009) The CREB/CRE transcriptional pathway: protection against oxidative stress-mediated neuronal cell death. J Neurochem 108:1251–1265. https://doi.org/10.1111/j.1471-4159.2008.05864.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karim N, Khan I, Abdelhalim A et al (2017) Molecular docking and antiamnesic effects of nepitrin isolated from Rosmarinus officinalis on scopolamine-induced memory impairment in mice. Biomed Pharmacother 96:700–709. https://doi.org/10.1016/j.biopha.2017.09.121

    Article  CAS  PubMed  Google Scholar 

  8. Candy JM, Perry RH, Perry EK et al (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59:277–289

    Article  CAS  PubMed  Google Scholar 

  9. Loizzo MR, Tundis R, Menichini F, Menichini F (2008) Natural products and their derivatives as cholinesterase inhibitors in the treatment of neurodegenerative disorders: an update. Curr Med Chem 15:1209–1228

    Article  CAS  PubMed  Google Scholar 

  10. Husain M, Mehta MA (2011) Cognitive enhancement by drugs in health and disease. Trends Cogn Sci 15:28–36. https://doi.org/10.1016/j.tics.2010.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM (2016) Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 14:101–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Williams RJ, Spencer JPE (2012) Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 52:35–45. https://doi.org/10.1016/j.freeradbiomed.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  13. Cho N, Choi JH, Yang H et al (2012) Neuroprotective and anti-inflammatory effects of flavonoids isolated from Rhus verniciflua in neuronal HT22 and microglial BV2 cell lines. Food Chem Toxicol 50:1940–1945. https://doi.org/10.1016/j.fct.2012.03.052

    Article  CAS  PubMed  Google Scholar 

  14. Yadav E, Singh D, Yadav P, Verma A (2017) Attenuation of dermal wounds via downregulating oxidative stress and inflammatory markers by protocatechuic acid rich n-butanol fraction of Trianthema portulacastrum Linn. in wistar albino rats. Biomed Pharmacother 96:86–97. https://doi.org/10.1016/j.biopha.2017.09.125

    Article  CAS  PubMed  Google Scholar 

  15. Mandal A, Bishayee A (2015) Trianthema portulacastrum Linn. displays anti-inflammatory responses during chemically induced rat mammary tumorigenesis through simultaneous and differential regulation of NF-κB and Nrf2 signaling pathways. Int J Mol Sci 16:2426–2445. https://doi.org/10.3390/ijms16022426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamaki J, Nagulapalli Venkata KC, Mandal A et al (2016) Health-promoting and disease-preventive potential of Trianthema portulacastrum Linn. (Gadabani)—an Indian medicinal and dietary plant. J Integr Med 14:84–99. https://doi.org/10.1016/S2095-4964(16)60247-9

    Article  PubMed  Google Scholar 

  17. Sukalingam K, Ganesan K, Xu B (2017) Trianthema portulacastrum L. (giant pigweed): phytochemistry and pharmacological properties. Phytochem Rev 16:461–478. https://doi.org/10.1007/s11101-017-9493-5

    Article  CAS  Google Scholar 

  18. Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  19. Tung BT, Hai NT, Thu DK (2017) Antioxidant and acetylcholinesterase inhibitory activities in vitro of different fraction of Huperzia squarrosa (Forst.) Trevis extract and attenuation of scopolamine-induced cognitive impairment in mice. J Ethnopharmacol 198:24–32. https://doi.org/10.1016/j.jep.2016.12.037

    Article  CAS  PubMed  Google Scholar 

  20. Sugimoto H, Iimura Y, Yamanishi Y, Yamatsu K (1995) Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-Benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine hydrochloride and related compounds. J Med Chem 38:4821–4829. https://doi.org/10.1021/jm00024a009

    Article  CAS  PubMed  Google Scholar 

  21. Kamal MA, Greig NH, Alhomida AS, Al-Jafari AA (2000) Kinetics of human acetylcholinesterase inhibition by the novel experimental alzheimer therapeutic agent, tolserine. Biochem Pharmacol 60:561–570. https://doi.org/10.1016/S0006-2952(00)00330-0

    Article  CAS  PubMed  Google Scholar 

  22. Itoh J, Nabeshima T, Kameyama T (1990) Utility of an elevated plus-maze for the evaluation of memory in mice: effects of nootropics, scopolamine and electroconvulsive shock. Psychopharmacology 101:27–33. https://doi.org/10.1007/BF02253713

    Article  CAS  PubMed  Google Scholar 

  23. Mani V, Parle M, Ramasamy K, Abdul Majeed AB (2011) Reversal of memory deficits by Coriandrum sativum leaves in mice. J Sci Food Agric 91:186–192. https://doi.org/10.1002/jsfa.4171

    Article  CAS  PubMed  Google Scholar 

  24. Parle M, Bansal N (2011) Antiamnesic activity of an ayurvedic formulation Chyawanprash in mice. Evid Based Complement Alternat Med. https://doi.org/10.1093/ecam/neq021

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hritcu L, Bagci E, Aydin E, Mihasan M (2015) Antiamnesic and antioxidants effects of Ferulago angulata essential oil against scopolamine-induced memory impairment in laboratory rats. Neurochem Res 40:1799–1809. https://doi.org/10.1007/s11064-015-1662-6

    Article  CAS  PubMed  Google Scholar 

  26. Winterbourn CC, Hawkins RE, Brian M, Carrell RW (1975) The estimation of red cell superoxide dismutase activity. J Lab Clin Med 85:337–341

    CAS  PubMed  Google Scholar 

  27. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394. https://doi.org/10.1016/0003-2697(72)90132-7

    Article  CAS  PubMed  Google Scholar 

  28. Sharma M, Gupta YK (2002) Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 71:2489–2498. https://doi.org/10.1016/S0024-3205(02)02083-0

    Article  CAS  PubMed  Google Scholar 

  29. Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15:212–216. https://doi.org/10.1016/0006-2944(76)90049-1

    Article  CAS  PubMed  Google Scholar 

  30. Drury R (1983) Theory and practice of histological techniques. J Clin Pathol 36:609. https://doi.org/10.1136/jcp.36.5.609-d

    Article  PubMed Central  Google Scholar 

  31. Muir JL (1997) Acetylcholine, aging, and Alzheimer’s disease. Pharmacol Biochem Behav 56:687–696

    Article  CAS  PubMed  Google Scholar 

  32. Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M et al (2015) Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology 232:931–942. https://doi.org/10.1007/s00213-014-3728-6

    Article  CAS  PubMed  Google Scholar 

  33. Shivhare MK, Singour PK, Chaurasiya PK, Pawar RS (2012) Trianthema portulacastrum Linn. (Bishkhapra). Pharmacogn Rev 6:132–140. https://doi.org/10.4103/0973-7847.99947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sarter M, Bodewitz G, Stephens DN (1988) Attenuation of scopolamine-induced impairment of spontaneous alteration behaviour by antagonist but not inverse agonist and agonist beta-carbolines. Psychopharmacology 94:491–495

    Article  CAS  PubMed  Google Scholar 

  35. Youdim KA, Shukitt-Hale B, Joseph JA (2004) Flavonoids and the brain: interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 37:1683–1693. https://doi.org/10.1016/j.freeradbiomed.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  36. Liguori I, Russo G, Curcio F et al (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772. https://doi.org/10.2147/CIA.S158513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sadiq A, Mahmood F, Ullah F et al (2015) Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: a possible role in the management of Alzheimer’s. Chem Cent J. https://doi.org/10.1186/s13065-015-0107-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr Vikas Kumar, Department of Pharmaceutical Sciences, SHUATS for his generous help in histological studies. Authors extend their thanks to Dr Puhspraj Gupta, Department of Pharmaceutical Sciences, SHUATS for his support during in vivo studies. They also express their gratitude to Prof. R. M. Kadam, Head of Department, Department of Botany, Mahatma Gandhi Mahavidyalaya, Latur, Maharastra, India for his kind help in identification of plant material.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pankajkumar Yadav or Amita Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, E., Singh, D., Debnath, B. et al. Molecular Docking and Cognitive Impairment Attenuating Effect of Phenolic Compound Rich Fraction of Trianthema portulacastrum in Scopolamine Induced Alzheimer’s Disease Like Condition. Neurochem Res 44, 1665–1677 (2019). https://doi.org/10.1007/s11064-019-02792-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02792-7

Keywords

Navigation