Skip to main content
Log in

Spatiotemporal Expression of Bcl-2/Bax and Neural Cell Apoptosis in the Developing Lumbosacral Spinal Cord of Rat Fetuses with Anorectal Malformations

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Fecal incontinence and constipation still remain the major complications after procedures for anorectal malformations (ARMs). Previous studies have demonstrated a decrease of neural cell in lumbosacral spinal cord of ARMs patients and rat models. However, the underlying mechanism remains elusive. In this study, the neural cell apoptosis and Bcl-2/Bax expression were explored during lumbosacral spinal cord development in normal and ARMs fetuses. ARMs rat fetuses were induced by treating pregnant rats with ethylenethiourea on embryonic day 10. TUNEL staining was performed to identify apoptosis, and the expression of Bcl-2/Bax was confirmed with immunohistochemical staining, RT-qPCR and Western blot analysis on E16, E17, E19 and E21. Apoptosis index (AI) in the ARMs group was significantly higher compared to normal group. Our results showed that TUNEL-positive cells were mainly localized in the ventral horn, which is the location of neural cells controlling defecation. And the expression of Bcl-2 decreased, whereas the level of Bax increased in the ARMs fetuses. In addition, there was a significantly negative correlation between protein expression of Bcl-2/Bax ratio and AI in the ARMs group. Abnormal apoptosis might be a fundamental pathogenesis for the number decrease of neural cells in lumbosacral spinal cord, which leads to complications after procedures for ARMs. The negative correlation between the ratio of Bcl-2/Bax and AI manifested that Bcl-2/Bax pathway might be the mechanism for neural cell apoptosis in ARMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van der Putte SC (1986) Normal and abnormal development of the anorectum. J Pediatr Surg 21(5):434–440

    Article  PubMed  Google Scholar 

  2. Peña A, Hong A (2000) Advances in the management of anorectal malformations. Am J Surg 180:370–376

    Article  PubMed  Google Scholar 

  3. Bai Y, Yuan Z, Wang W, Zhao Y, Wang H, Wang W (2000) Quality of life for children with fecal incontinence after surgically corrected anorectal malformation. J Pediatr Surg 35(3):462–464

    Article  CAS  PubMed  Google Scholar 

  4. Li L, Li Z, Wang LY, Xiao FD (1993) Anorectal anomaly neuropathological changes in the sacral spinal cord. J Pediatr Surg 28(7):880–885

    Article  CAS  PubMed  Google Scholar 

  5. Yuan ZW, Lui VC, Tam PK (2003) Deficient motor innervation of the sphincter mechanism in fetal rats with anorectal malformation: a quantitative study by fluorogold retrograde tracing. J Pediatr Surg 38(9):1383–1388

    Article  CAS  PubMed  Google Scholar 

  6. Jia H, Zhang K, Zhang S, Yuan Z, Bai Y, Wang W (2007) Quantitative analysis of sacral parasympathetic nucleus innervating the rectum in rats with anorectal malformation. J Pediatr Surg 42(9):1544–1548

    Article  PubMed  Google Scholar 

  7. Guan KP, Li H, Fan Y, Wang WL, Yuan ZW (2009) Defective development of sensory neurons innervating the levator ani muscle in fetal rats with anorectal malformation. Birth Defects Rese A 85(7):583–587

    Article  CAS  Google Scholar 

  8. Qi BQ, Beasley SW, Arsic D (2004) Abnormalities of the vertebral column and ribs associated with anorectal malformations. Pediatr Surg Int 20(7):529–533

    Article  PubMed  Google Scholar 

  9. Yuan Z, Bai Y, Zhang Z, Ji S, Li Z, Wang W (2000) Neural electrophysiological studies on the external anal sphincter. J Pediatr Surg 35(7):1052–1057

    Article  CAS  PubMed  Google Scholar 

  10. Rintala R (1990) Postoperative internal sphincter function in anorectal malformations-a manometric study. Pediatr Surg Int 5:127–130

    Article  Google Scholar 

  11. Fernández-Fraga X, Azpiroz F, Malagelada JR (2002) Significance of pelvic floor muscles in anal incontinence. Gastroenterology 123(5):1441–1450

    Article  PubMed  Google Scholar 

  12. Wang W, Jia H, Zhang H, Chen Q, Zhang T, Bai Y et al (2011) Abnormal innervation patterns in the anorectum of ETU-induced fetal rats with anorectal malformations. Neurosci Lett 495(2):88–92

    Article  CAS  PubMed  Google Scholar 

  13. Li FF, Zhang T, Bai YZ, Yuan ZW, Wang WL (2011) Spatiotemporal expression of Wnt5a during the development of the hindgut and anorectum in human embryos. Int J Colorectal Dis 26(8):983–988

    Article  PubMed  Google Scholar 

  14. Jia H, Chen Q, Zhang T, Bai Y, Yuan Z, Wang W (2011) Wnt5a expression in the hindgut of fetal rats with chemically induced anorectal malformations-studies in the ETU rat model. Int J Colorectal Dis 26(4):493–499

    Article  PubMed  Google Scholar 

  15. Zhang SW, Bai YZ, Zhang SC, Wang DJ, Zhang T, Zhang D et al (2008) Embryonic development of the striated muscle complex in rats with anorectal malformations. J Pediatr Surg 43(8):1452–1458

    Article  PubMed  Google Scholar 

  16. Zhang SW, Bai YZ, Zhang D, Zhang T, Zhang SC, Wang DJ et al (2010) Embryonic development of the internal anal sphincter in rats with anorectal malformations. J Pediatr Surg 45(11):2195–2202

    Article  PubMed  Google Scholar 

  17. Dan Z, Bo ZZ, Tao Z, Wei ZS, Jia WD, Cheng ZS et al (2010) Hoxd-13 expression in the development of hindgut in ethylenethiourea-exposed fetal rats. J Pediatr Surg 45(4):755–761

    Article  PubMed  Google Scholar 

  18. Chen QJ, Jia HM, Zhang SW, Zhang SC, Bai YZ, Yuan ZW et al (2009) Apoptosis during the development of pelvic floor muscle in anorectal malformation rats. J Pediatr Surg 44(10):1884–1891

    Article  CAS  PubMed  Google Scholar 

  19. Wang DJ, Bai YZ, Zhang SW, Gao H, Zhang SC, Zhang D et al (2009) Expression of EphB2 in the development of anorectal malformations in fetal rats. J Pediatr Surg 44(3):592–599

    Article  PubMed  Google Scholar 

  20. Zhang T, Bai YZ, Wang da J, Jia HM, Yuan ZW, Wang WL (2009) Spatiotemporal pattern analysis of transcription factor 4 in the developing anorectum of the rat embryo with anorectal malformations. Int J Colorectal Dis 24(9):1039–1047

    Article  PubMed  Google Scholar 

  21. Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    Article  CAS  PubMed  Google Scholar 

  22. Qi BQ, Beasley SW, Frizelle FA (2002) Clarification of the process that lead to anorectal malformations in the ETU-induced rat model of imperforate anus. J Pediatr Surg 37(9):1305–1312

    Article  PubMed  Google Scholar 

  23. Mandhan P, Quan QB, Beasley S, Sullivan M (2006) Sonic hedgehog, BMP4, and Hox genes in the development of anorectal malformations in Ethylenethiourea-exposed fetal rats. J Pediatr Surg 41(12):2041–2045

    Article  PubMed  Google Scholar 

  24. Kiely EM, Peña A (1998) Anorectal malformations. In: O’Neill JA, Rowe MI, Grosfeld JL, Fonkalsrud EW, Coran AG (eds) Pediatric surgery, 5th edn. Mosby, St Louis

    Google Scholar 

  25. Heij HA, Nievelstein RA, de Zwart I, Verbeeten BW, Valk J, Vos A (1996) Abnormal anatomy of the lumbosacral region imaged by magnetic resonance in children with anorectal malformations. Arch Dis Child 74(5):441–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sadoul R (1998) Bcl-2 family members in the development and degenerative pathologies of the nervous system. Cell Death Differ 5(10):805–815

    Article  CAS  PubMed  Google Scholar 

  27. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607

    Article  CAS  PubMed  Google Scholar 

  28. Cass DL, Quinn TM, Yang EY, Liechty KW, Crombleholme TM, Flake AW et al (1998) Increased cell proliferation and decreased apoptosis characterize congenital cystic adenomatoid malformation of the lung. J Pediatr Surg 33(7):1043–1046

    Article  CAS  PubMed  Google Scholar 

  29. Sergi C, Kahl P, Otto HF (2000) Contribution of apoptosis and apoptosis-related proteins to the malformation of the primitive intrahepatic biliary system in Meckel syndrome. Am J athol 156(5):1589–1598

    Article  CAS  Google Scholar 

  30. Gabriel Ichim, Servane Tauszig-Delamasure, Patrick Mehlen (2012) Neurotrophins and cell death. Exp Cell Res 318(11):1221–1228

    Article  CAS  PubMed  Google Scholar 

  31. Jacobs WB, Kaplan DR, Miller FD (2006) The p53 family in nervous system development and disease. J Neurochem 97(6):1571–1584

    Article  CAS  PubMed  Google Scholar 

  32. Krajewska M, Mai JK, Zapata JM, Ashwell KW, Schendel SL, Reed JC et al (2002) Dynamics of expression of apoptosis-regulatory proteins. Cell Death Differ 9(2):145–157

    Article  CAS  PubMed  Google Scholar 

  33. Reed JC (1997) Double identity for proteins of theBcl-2 family. Nature 387(6635):773–776

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Foundation of China (Grant Nos. 30872704 and 81671503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Geng, Y., Yao, Z. et al. Spatiotemporal Expression of Bcl-2/Bax and Neural Cell Apoptosis in the Developing Lumbosacral Spinal Cord of Rat Fetuses with Anorectal Malformations. Neurochem Res 42, 3160–3169 (2017). https://doi.org/10.1007/s11064-017-2354-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2354-1

Keywords

Navigation