Skip to main content

Advertisement

Log in

Peripheral Blood Monocyte Tolerance Alleviates Intraperitoneal Lipopolysaccharides-Induced Neuroinflammation in Rats Via Upregulating the CD200R Expression

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuroinflammation is an important pathogenesis of Parkinson’s disease (PD). The peripheral immune system could produce profound effects on central immunities. The peripheral blood monocyte (PBM) immune tolerance is the refractoriness of immune system to avoid overactive peripheral inflammation. The PBM are also actively involved in central immune activities. There is evidence implying the probable failure of immune tolerance and impairment of CD200/CD200R signaling in PD patients. Here we aimed to explore the effects of PBM tolerance in peripheral LPS-induced neuroinflammation as well as the specific roles of CD200/CD200R pathway in PBM tolerance. We found that repeated intraperitoneal administration of 0.3 mg/kg LPS was able to induce the PBM tolerance. PBM tolerance reduced peripheral LPS-induced elevation of serum TNF-α, IL-1β expression and TLR4 expression in PBM. PBM tolerance and PBM depletion alleviated peripheral LPS-induced neuroinflammation demonstrated by reduced proinflammatory cytokines in brain and blocked microglia activation. The CD200R expression in PBM was upregulated in PBM tolerance group after intraperitoneal administration of high-dose LPS in vivo and the blockade of CD200/CD200R interaction induced the failure of PBM tolerance in vitro. These results suggested the PBM tolerance could attenuate the peripheral LPS-induced neuroinflammation via upregulating the CD200R expression and the CD200/CD200R signaling played a key role in PBM tolerance. Effective regulation of the PBM in periphery may be a potential way to limit neuroinflammation while the CD200R on PBM could be used as a potential therapeutic target to alleviate neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

PBM:

Peripheral blood monocyte

LPS:

Lipopolysaccharides

SN:

Substantia nigra

ROS:

Reactive oxygen species

CNS:

Central nervous system

BBB:

Blood brain barrier

TNF-α:

Tumor necrosis factor-α

IL-1β:

Interleukin-1β

TH:

Tyrosine hydroxylase

McAb:

Monoclonal antibody

PcAb:

Polyclonal antibody

ANOVA:

Analysis of variance

References

  1. Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schreuder L, Eggen BJ, Biber K, Schoemaker RG, Laman JD, de Rooij SE (2017) Pathophysiological and behavioral effects of systemic inflammation in aged and diseased rodents with relevance to delirium: a systematic review. Brain Behav Immun 62:362–381

    Article  CAS  PubMed  Google Scholar 

  3. Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflamm 12:114

    Article  Google Scholar 

  4. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  PubMed Central  Google Scholar 

  5. Machado A, Herrera AJ, Venero JL, Santiago M, De Pablos RM, Villarán RF, Espinosa-Oliva AM, Argüelles S, Sarmiento M, Delgado-Cortés MJ, Mauriño R, Cano J (2011) Peripheral inflammation increases the damage in animal models of nigrostriatal dopaminergic neurodegeneration: possible implication in Parkinson’s disease incidence. Parkinsons Dis 2011:393769.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sung YF, Liu FC, Lin CC, Lee JT, Yang FC, Chou YC, Lin CL, Kao CH, Lo HY, Yang TY (2016) Reduced risk of Parkinson disease in patients with rheumatoid arthritis: a nationwide population-based study. Mayo Clin Proc 91:1346–1353

    Article  PubMed  Google Scholar 

  7. Rugbjerg K, Friis S, Ritz B, Schernhammer ES, Korbo L, Olsen JH (2009) Autoimmune disease and risk for Parkinson disease: a population-based case-control study. Neurology 73:1462–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Priller J, Flügel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernández-Klett F, Prass K, Bechmann I, de Boer BA, Frotscher M, Kreutzberg GW, Persons DA, Dirnagl U (2001) Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7:1356–1361

    Article  CAS  PubMed  Google Scholar 

  10. Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14:1227–1235

    Article  CAS  PubMed  Google Scholar 

  11. Reader BF, Jarrett BL, McKim DB, Wohleb ES, Godbout JP, Sheridan JF (2015) Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety. Neuroscience 289:429–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Minogue AM (2017) Role of infiltrating monocytes/macrophages in acute and chronic neuroinflammation: effects on cognition, learning and affective behaviour. Prog Neuropsychopharmacol Biol Psychiatry 79:15–18

    Article  CAS  PubMed  Google Scholar 

  13. Cao JJ, Li KS, Shen YQ (2011) Activated immune cells in Parkinson’s disease. J Neuroimmune Pharmacol 6:323–329

    Article  PubMed  Google Scholar 

  14. López-Collazo E, del Fresno C (2013) Pathophysiology of endotoxin tolerance: mechanisms and clinical consequences. Crit Care 17:242

    Article  PubMed  PubMed Central  Google Scholar 

  15. Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, Estes JD, Dodiya HB, Keshavarzian A (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 6:e28032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Holmannová D, Kolácková M, Kondélková K, Kunes P, Krejsek J, Andrýs C (2012) CD200/CD200R paired potent inhibitory molecules regulating immune and inflammatory responses; Part I: CD200/CD200R structure, activation, and function. Acta Med 55:12–17

    Google Scholar 

  17. Ryqiel TP, Meyaard L (2012) CD200R signaling in tumor tolerance and inflammation: a tricky balance. Curr Opin Immunol 24:233–238

    Article  Google Scholar 

  18. Luo XG, Zhang JJ, Zhang CD, Liu R, Zheng L, Wang XJ, Chen SD, Ding JQ (2010) Altered regulation of CD200 receptor in monocyte-derived macrophages from individuals with Parkinson’s disease. Neurochem Res 35:540–547

    Article  CAS  PubMed  Google Scholar 

  19. Xie X, Luo X, Liu N, Li X, Lou F, Zheng Y, Ren Y (2017) Monocytes, microglia and CD200-CD200R1 signaling are essential in the transmission of inflammation from the periphery to the central nervous system. J Neurochem 141:222–235

    Article  CAS  PubMed  Google Scholar 

  20. Kim SJ, Kim HM (2017) Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Rep 50:55–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li J, Csakai A, Jin J, Zhang F, Yin H (2016) Therapeutic developments targeting toll-like receptor-4-mediated neuroinflammation. ChemMedChem 11:154–165

    Article  CAS  PubMed  Google Scholar 

  22. Chen K, Geng S, Yuan R, Diao N, Upchurch Z, Li L (2015) Super-low dose endotoxin pre-conditioning exacerbates sepsis mortality. EBioMedicine 2:324–333.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yang NB, Ni SL, Li SS, Zhang SN, Hu DP, Lu MQ (2015) Endotoxin tolerance alleviates experimental acute liver failure via inhibition of high mobility group box 1. Int J Clin Exp Pathol 8:9062–9071

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi DW, Zhang J, Jiang HN, Tong CY, Gu GR, Ji Y, Summah H, Qu JM (2011) LPS pretreatment ameliorates multiple organ injuries and improves survival in a murine model of polymicrobial sepsis. Inflamm Res 60:841–849

    Article  CAS  PubMed  Google Scholar 

  25. Rios EC, Soriano FG, Olah G, Gerö D, Szczesny B, Szabo C (2016) Hydrogen sulfide modulates chromatin remodeling and inflammatory mediator production in response to endotoxin, but does not play a role in the development of endotoxin tolerance. J Inflamm 13:10.

    Article  Google Scholar 

  26. van Rooijen N, Sanders A, van den Berg TK (1996) Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J Immunol Methods 193:93–99

    Article  PubMed  Google Scholar 

  27. Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD (1995) The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15:437–446

    Article  CAS  PubMed  Google Scholar 

  28. Walker DG, Lue LF (2015) Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther 7:56.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JP (2017) NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med 214:1351–1370

    Article  CAS  PubMed  Google Scholar 

  30. Wilkinson BL, Landreth GE (2006) The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflamm 3:30

    Article  Google Scholar 

  31. Bagyinszky E, Giau VV, Shim K, Suk K, An SSA, Kim S (2017) Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J Neurol Sci 376:242–254

    Article  CAS  PubMed  Google Scholar 

  32. Teeling JL, Perry VH (2009) Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience 158:1062–1073

    Article  CAS  PubMed  Google Scholar 

  33. Turrin NP, Rivest S (2004) Unraveling the molecular details involved in the intimate link between the immune and neuroendocrine systems. Exp Biol Med 229:996–1006

    Article  CAS  Google Scholar 

  34. Waschbisch A, Schröder S, Schraudner D, Sammet L, Weksler B, Melms A, Pfeifenbring S, Stadelmann C, Schwab S, Linker RA (2016) Pivotal role for CD16+ monocytes in immune surveillance of the central nervous system. J Immunol 196:1558–1567

    Article  CAS  PubMed  Google Scholar 

  35. Stalder AK, Ermini F, Bondolfi L, Krenger W, Burbach GJ, Deller T, Coomaraswamy J, Staufenbiel M, Landmann R, Jucker M (2005) Invasion of hematopoietic cells into the brain of amyloid precursor protein transgenic mice. J Neurosci 25:11125–11132

    Article  CAS  PubMed  Google Scholar 

  36. Kim WK, Avarez X, Williams K (2005) The role of monocytes and perivascular macrophages in HIV and SIV neuropathogenesis: information from non-human primate models. Neurotox Res 8:107–115

    Article  CAS  PubMed  Google Scholar 

  37. González H, Contreras F, Pacheco R (2015) Regulation of the neurodegenerative process associated to Parkinson’s disease by CD4+ T-cells. J Neuroimmune Pharmacol 10:561–575

    Article  PubMed  Google Scholar 

  38. Rosenzweig HL, Lessov NS, Henshall DC, Minami M, Simon RP, Stenzel-Poore MP (2004) Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice. Stroke 35:2576–2581

    Article  CAS  PubMed  Google Scholar 

  39. Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF (2009) Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol 215:5–19

    Article  CAS  PubMed  Google Scholar 

  40. Jenmalm MC, Cherwinski H, Bowman EP, Phillips JH, Sedgwick JD (2006) Regulation of myeloid cell function through the CD200 receptor. J Immunol 176:191–199

    Article  CAS  PubMed  Google Scholar 

  41. Gorczynski RM, Chen Z, Clark DA, Kai Y, Lee L, Nachman J, Wong S, Marsden P (2004) Structural and functional heterogeneity in the CD200R family of immunoregulatory molecules and their expression at the feto-maternal interface. Am J Reprod Immunol 52:147–163

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [No. 81371421].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Xie, X., Liu, Y. et al. Peripheral Blood Monocyte Tolerance Alleviates Intraperitoneal Lipopolysaccharides-Induced Neuroinflammation in Rats Via Upregulating the CD200R Expression. Neurochem Res 42, 3019–3032 (2017). https://doi.org/10.1007/s11064-017-2334-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2334-5

Keywords

Navigation